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Introduction

Introduction
Major challenge for mm-wave and THz operation:

generating sufficient output power 

=> need to exploit process limits by careful device and circuit optimization
=>  need accurate compact models for active and passive devices

electronics photonics

solid-state THz sources (CW)



 © M. Schroter 4

Introduction

HBT modeling challenges 
... to be addressed for mm-wave and THz circuit design

• self-heating  =>  thermal stability, reliability

• breakdown  =>  reliability, stability

• high-current effects & quasi-saturation  =>  PAE, operating frequency 

• substrate effects  =>  PAE, jitter, operating frequency

• large-signal operation  =>  distortion

• distributed effects: high-frequency, breakdown, thermal, substrate

• gm drop (technology dependent)  =>  drive capability/circuit speed 

ALSO: model verification issues ... 

• process development is outpacing measurement equipment availability 
=> how to verify large-signal modeling at multi-100 GHz?
     (incl. distortion!!)
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Introduction

Modeling approaches

Goal: cover large variety of applications & circuit optimization (bias, T, f)
=> Physics-based model (cuts design cycle, supports process dev.)

Criteria Behavioral, X-par. Physics-based
accuracy high (within narrow ranges) moderate to high over wide

range
numerical stability compromised outside fitting

ranges
high (for standard models)

fabricated devices need every possible layout
used in circuits 

only few devices 
(6 HF trs, 6 test structures)

measurement effort moderate to high moderate to low
par. extraction effort moderate to low (per device) 

very high for library
moderate to low (per device)
very low for library

geometry scaling inconsistent (typically) consistent
predictive capability none moderate to high
statistical modeling none (very high effort) good to excellent
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Introduction

Physics-based compact model
... definition

each spatial region is represented by corresp. equivalent circuit element 

• each EC element value is a function of bias, T, structural and physical
parameters 
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Introduction

Physics-based compact model
... definition

each spatial region is represented by corresp. equivalent circuit element 
• each EC element value is a function of bias, T, structural & physical parameters

=>  realized in HICUM/Level2 (from the beginning)
=> supports circuit optimization, statistical modeling, process development 
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HICUM/Level2 extensions

HICUM/Level2 extensions
... recent development work during DOT5, DOT7, RF2THz

• transfer current and gm drop (technology dependent) 
• bias dependence of reverse Early effect  =>  gm degradation at low injection
• weight factor for low-current mobile charge  =>  gm degradation at medium injection 
• temperature dependence of weight factors

• explicit formulation of BC barrier effect 

• flexible CE voltage dependence of critical current 

• temperature dependence of thermal resistance

• simplification of AC emitter current crowding implementation

• exact implementation of correlated HF noise (verified up to at least 500GHz)

• simplification of input NQS effect description (and verification)

... and: reliable model parameter extraction methods 
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HICUM/Level2 extensions

Complete HICUM/L2 equivalent circuit
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HICUM/Level2 extensions

Model features

• large-signal model 
=> small-signal, noise, distortion follow automatically!!

• includes all relevant SiGe HBT related effects
(e.g. Ge dependence, BC barrier)

• physics-based 
=>  geometry scalable, predictive (statistical simulation) capability

• available in all mainstream simulators (ADS, ELDO, MWO, SPECTRE ...)
• vs. "special" models available in only a single simulator

• applied to every Si BJT and SiGe HBT process node since early eighties  
=> spans 90(55)nm to 1μm lithography, 10 to 400 GHz transit frequency

=>  continuous model development and improvement
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HICUM/Level2 extensions

Transfer current

=>  gm degradation difficult to capture accurately with existing models
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• gm degrades at low-injec-
tion for some technologies 

• degradation is not related to
process generations

• not caused by emitter resistance

• not caused by BGN or quantum effects  
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HICUM/Level2 extensions

Transconductance 
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similar trend observed from device simulation
for graded Ge profile in BE SCR

=> Ge grading causes bias dependence of 
GICCR weight factor hjEi for BE depletion 
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HICUM/Level2 extensions

Transconductance 

=>  very accurate modeling of transconductance

 

10
−3

10
−2

10
−1

10
0

10
110

−3

10
−1

10
1

10
3

10
5

Q
m

in
, Q

m
in

,T
 (

fC
)

J
C

 (mA/µm2)

 

 

0

100

200

300

400

f T
 (

G
H

z)

grad, Q
min

grad, Q
min,T

box, Q
min

box, Q
min,T

10
−5

10
−3

10
−10.7

0.75

0.8

0.85

0.9

0.95

1

J
C

 (mA/µm2)
g m

*V
T/I C

 

 

A
−1

A
0

B
−3

B
−2

B
−1

B
0

C
−1

C
0

HICUM/L2 2.32

•  hjEi voltage dependence   

 with  

• hf0: weight factor for mobile charge 
• graded Ge causes shift in weighted 
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HICUM/Level2 extensions

AC emitter current crowding (Lateral NQS effect)
Issue: generates 2.3MB of code for derivatives! 

• gm overestimation by iTf/VT partially compensated by using τf0 instead of τf  
=>  reduces code size (ADMS) to 0.3 MB(2.31) 

• AC analysis by using 

• Previous calculations of diffusion capacitances 

   and   

=>  calculated using ddx-operator

• Simplification avoiding ddx operator

   and   .
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HICUM/Level2 extensions

Temperature dependence of thermal resistance
• For potential numerical stability reasons, modeling of Rth(T) was

changed from nonlinear to linear formulation: 

    to    

• For backward compatibility, the present implementation reads

      where the previous term and parameter have still been kept
• Setting
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Thermal and emitter resistance
Thermal and emitter resistance
... from a joint extraction

• Scaling of thermal resistance was changed from

   to  

to give better results for width scaled devices

• Emitter resistance scaling almost ideally linear
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HICUM/Level2 extensions

Correlated noise
• New formulation for correlated noise modeling

• modeling at the transistor input, not output
• flag flcono turns correl. noise on (1) and off (0)
• conditional statement for calculation of square root

IF    =>   

otherwise  =>   

• no use of nested ddt operators anymore
• default values of αQf (alqf) & αiT (alit) have been

changed to physically meaningful values
• Range of alqf & alit modified from [0:1] to (0:1]

• Generic method for constructing corre-
lated noise networks see:
• J. Herricht et al., "Systematic compact modeling

of correlated noise in bipolar transistor", accepted
in IEEE Trans. MTT, 2012. 
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Model verification

Model verification
• standard characteristics: DC, small-signal y-parameters

occasionally noise (often limited 26 GHz), sometimes load-pull & harmonics

=>  typically in (foundry) characterization labs
=>  issues for mm-wave & THz technologies

• need (large) arrays for achieving suitable impedances  =>  impact of interconnect parasitics
• distortion/harmonics, load-pull: coupler & passive tuners limit frequency to below 50...75GHz
• on-wafer S-parameter measurement: limited to 110GHz in foundries, rarely 220GHz, none at

higher frequencies; pulsed AC difficult (bias Tees, meas. interval)
• severe self-heating limits usable bias region for parameter extraction

=> how to verify compact models beyond equipment limitations?
• device simulation: small-signal, noise, large-signal characteristics

=>  limited to basic 1D or 2D device structure without major parasitic regions
• use in-band distortion from two-tone load-pull  =>  limited to magnitude

=> use physics-based models for extrapolating beyond equipment limits
=> Really needed: 

pulsed mag & phase (or time domain) measurement capability up to 1THz 
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Model verification

High-performance SiGe HBT (cont’d)
B7HF500 (IFX) high-performance BEC transistor with AE0=2x0.1x4.88μm²

          transit frequency                                output vs. input power  

=> excellent agreement up to high input power and third harmonics
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Summary

Summary 

• Need for pushing process limits  =>  accurate compact HBT modeling 

• HBT compact modeling approaches (physics-based vs. behavioral models)  

• HICUM/L2 latest developments
• released as CMC model v2.33
• available in all commercial circuit simulators and many industry PDKs

• Experimental examples for small and large-signal behavior
• high-performance (low breakdown voltage) HBTs
• similar results were obtained also for high-voltage (low speed) HBTs
• used in industry (e.g. WCDMS, OFDMA, CD/DVD laser drivers, OC192, GSM and GPS

receiver front ends, wireless entry systems, UWB, DBS(SAT), radar, OC768...) 
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Summary

Planned extensions and improvements

• improved substrate coupling network (incl. compact geometry scaling)

• BTB, TAT in BC SCR  and  BTB in forward-biased BE SCR

• reliability model

• additional model verification on benchmark circuits 

• CPU time reduction
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Summary
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Appendix

Appendix
• SG13 (IHP) CBE transistor with AE0= 8 x 0.12 x 1.1μm²: DC, fT, fmax 
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Appendix

Model verification (cont’d)
• SG13 (IHP) CBE HBT, AE0= 8x0.12x1.1μm²: y-parameters at peak fT
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Appendix

Model verification (cont’d)
• SG13 (IHP) CBE HBT, AE0=8x0.12x1.1μm²: y-parameters at peak fT 
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