Latest developments of HICUM/L2 for mm-wave applications

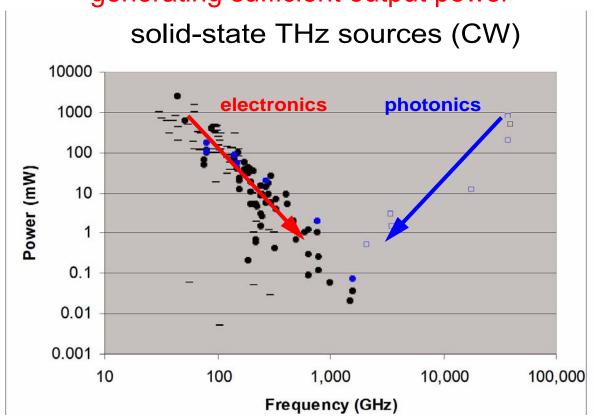
Michael Schroter^{1,2}, Andreas Pawlak¹, Julia Krause¹, Paulius Sakalas^{1,3}

¹CEDIC, TU Dresden, Dresden, Germany

²ECE Dept., UC San Diego, La Jolla, USA

³FRL Semic. Phys. Inst., Vilnius, Lithuania

BCTM Open Workshop, Bordeaux (France)
Oct. 3, 2013


Outline

- Introduction
- HICUM/Level2 extensions
- Model verification
- Summary

Introduction

Major challenge for mm-wave and THz operation:

generating sufficient output power

- => need to exploit process limits by careful device and circuit optimization
 - => need accurate compact models for active and passive devices

HBT modeling challenges

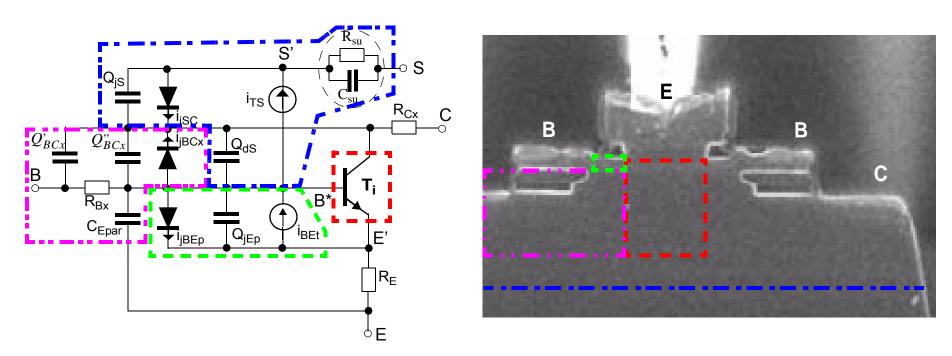
... to be addressed for mm-wave and THz circuit design

- self-heating => thermal stability, reliability
- breakdown => reliability, stability
- high-current effects & quasi-saturation => PAE, operating frequency
- substrate effects => PAE, jitter, operating frequency
- large-signal operation => distortion
- distributed effects: high-frequency, breakdown, thermal, substrate
- g_m drop (technology dependent) => drive capability/circuit speed

ALSO: model *verification* issues ...

- process development is outpacing measurement equipment availability
 - => how to verify large-signal modeling at multi-100 GHz? (incl. distortion!!)

Modeling approaches

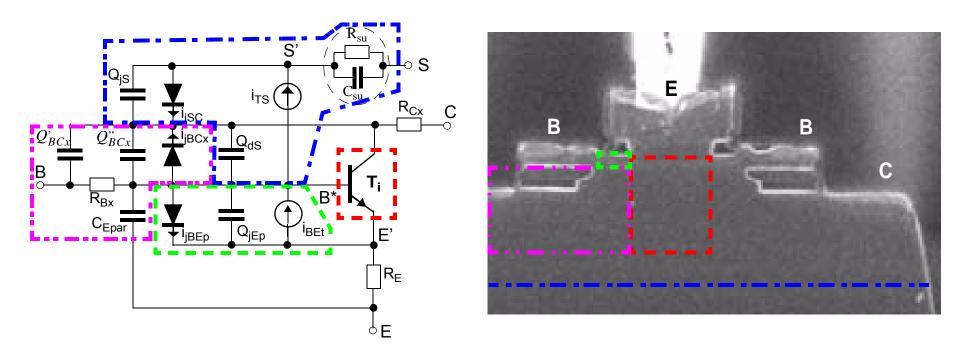

Criteria	Behavioral, X-par.	Physics-based
accuracy	high (within narrow ranges)	moderate to high over wide range
numerical stability	compromised outside fitting ranges	high (for standard models)
fabricated devices	need every possible layout used in circuits	only few devices (6 HF trs, 6 test structures)
measurement effort	moderate to high	moderate to low
par. extraction effort	moderate to low (per device) very high for library	moderate to low (per device) very low for library
geometry scaling	inconsistent (typically)	consistent
predictive capability	none	moderate to high
statistical modeling	none (very high effort)	good to excellent

Goal: cover large variety of applications & circuit optimization (bias, T, f)

=> Physics-based model (cuts design cycle, supports process dev.)

Physics-based compact model

... definition



each spatial region is represented by corresp. equivalent circuit element

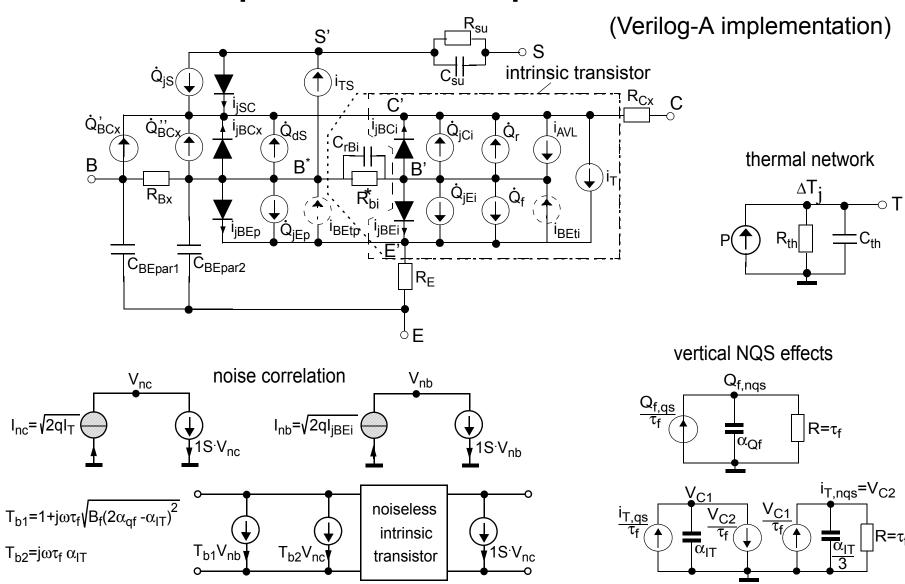
 each EC element value is a function of bias, T, structural and physical parameters

Physics-based compact model

... definition

each spatial region is represented by corresp. equivalent circuit element

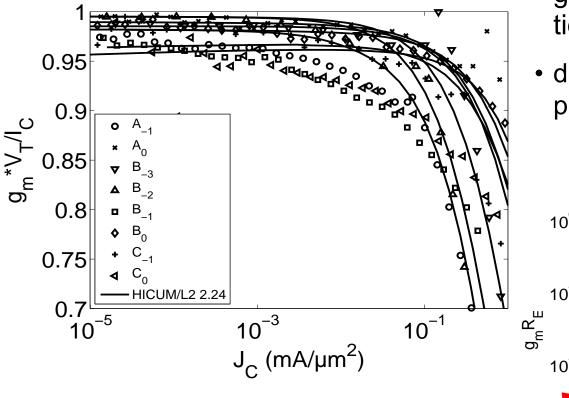
- each EC element value is a function of bias, T, structural & physical parameters
 - => realized in HICUM/Level2 (from the beginning)
- => supports circuit optimization, statistical modeling, process development

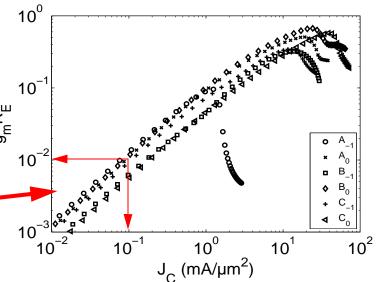

HICUM/Level2 extensions

... recent development work during DOT5, DOT7, RF2THz

- transfer current and g_m drop (technology dependent)
 - bias dependence of reverse Early effect => g_m degradation at low injection
 - weight factor for low-current mobile charge => g_m degradation at medium injection
 - temperature dependence of weight factors
- explicit formulation of BC barrier effect
- flexible CE voltage dependence of critical current
- temperature dependence of thermal resistance
- simplification of AC emitter current crowding implementation
- exact implementation of correlated HF noise (verified up to at least 500GHz)
- simplification of input NQS effect description (and verification)

... and: reliable model parameter extraction methods

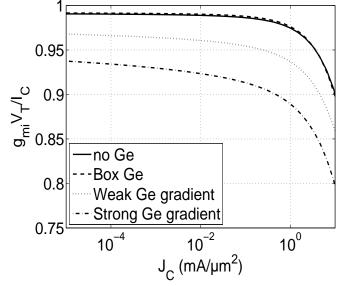

Complete HICUM/L2 equivalent circuit

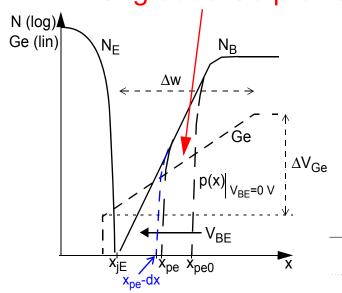

Model features

- large-signal model
 => small-signal, noise, distortion follow automatically!!
- includes all relevant SiGe HBT related effects (e.g. Ge dependence, BC barrier)
- physics-based
 - => geometry scalable, predictive (statistical simulation) capability
- available in all mainstream simulators (ADS, ELDO, MWO, SPECTRE ...)
 - vs. "special" models available in only a single simulator
- applied to every Si BJT and SiGe HBT process node since early eighties => spans 90(55)nm to 1μm lithography, 10 to 400 GHz transit frequency
 - => continuous model development and improvement

Transfer current

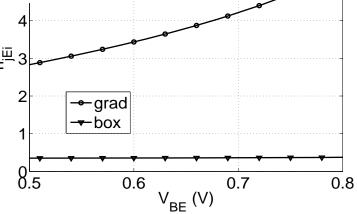
- g_m degrades at low-injection for some technologies
- degradation is not related to process generations




- not caused by emitter resistance
- not caused by BGN or quantum effects

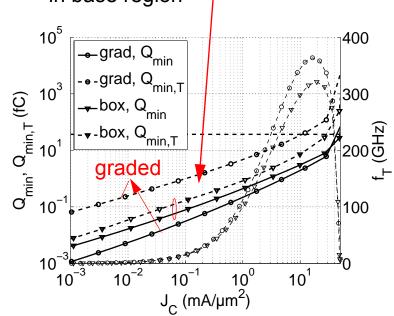
=> g_m degradation difficult to capture accurately with existing models

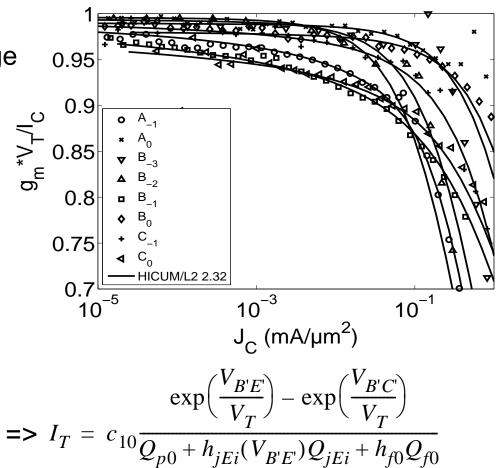
Transconductance



=> Ge grading causes bias dependence of GICCR weight factor h_{jEi} for BE depletion charge Q_{iEi}:

$$I_T = \frac{c_{10}}{Q_{p0} + h_{jEi}Q_{jEi}} \left[\exp\left(\frac{V_{B'E'}}{V_T}\right) - \exp\left(\frac{V_{B'C'}}{V_T}\right) \right]$$




Transconductance

• h_{jEi} voltage dependence $h_{jEi}(V_{B'E'}) = h_{jEi0} \frac{\exp(u) - 1}{u}$

with $u = a_{hjEi} \sqrt{1 - V_{B'E'} / V_{DEi}}$

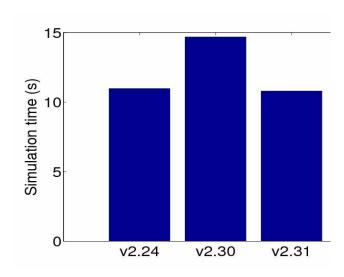
- h_{f0}: weight factor for mobile charge
 - graded Ge causes shift in weighted mobile charge center of gravity in base region

=> very accurate modeling of transconductance

AC emitter current crowding (Lateral NQS effect)

Issue: generates 2.3MB of code for derivatives!

AC analysis by using


$$C_{RBi} = f_{CRBi}(C_{jEi} + C_{jCi} + C_{dEi} + C_{dCi})$$

Previous calculations of diffusion capacitances

$$C_{dEi} = \left. rac{dQ_{dEi}}{dV_{BE}} \right|_{V_{BC}} \quad \text{and} \quad C_{dCi} = \left. rac{dQ_{jCi}}{dV_{BC}} \right|_{V_{BE}}$$

- => calculated using ddx-operator
- Simplification avoiding ddx operator

$$C_{dEi} = \frac{dQ_{dEi}}{di_{Tf}} \frac{di_{Tf}}{dV_{BE}} \approx \tau_{f0} \frac{i_{Tf}}{V_{T}} \quad \text{and} \quad C_{dCi} \approx \tau_{r} \frac{i_{Tr}}{V_{T}}.$$

 $\mathsf{C}_{\mathsf{RBi}}$

 R_{Bi}

B*

• g_m overestimation by i_{Tf}/V_T partially compensated by using τ_{f0} instead of τ_f => reduces code size (ADMS) to 0.3 MB(2.31)

Temperature dependence of thermal resistance

• For potential numerical stability reasons, modeling of $R_{th}(T)$ was changed from nonlinear to linear formulation:

$$R_{th}(T) = R_{th}(T_0) \left(\frac{T}{T_0}\right)^{\zeta_{Rth}}$$
 to $R_{th}(T) = R_{th}(T_0)(1 + \alpha_{Rth}\Delta T)$

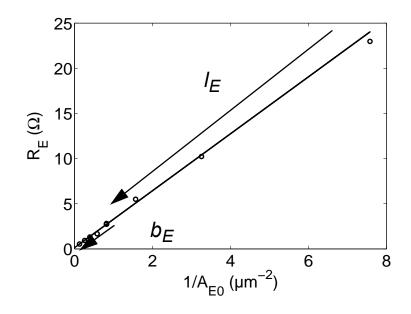
For backward compatibility, the present implementation reads

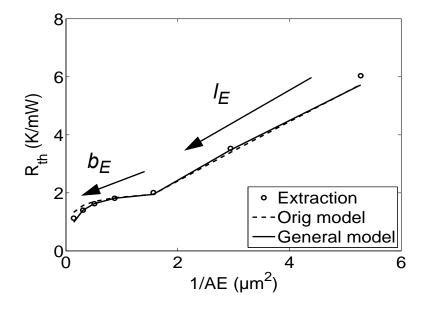
$$R_{th}(T) = R_{th}(T_0)(1 + \alpha_{Rth}\Delta T) \left(\frac{T}{T_0}\right)^{\zeta_{Rth}}$$

where the previous term and parameter have still been kept

- Setting
 - α_{Rth} = 0 and ζ_{Rth} > 0 recovers the previous formulation
 - α_{Rth} > 0 and ζ_{Rth} = 0 gives the new formulation
- Planned: no further support for previous implementation (and parameter ζ_{Rth}) but requires to add prevention of negative R_{th}

Thermal and emitter resistance

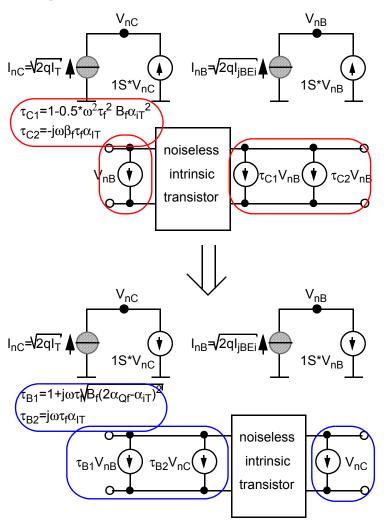

... from a joint extraction


Scaling of thermal resistance was changed from

$$R_{th} = \frac{\ln(4l_E/b_E)}{l_E} r_{th} \quad \text{to} \quad R_{th} = \frac{R_{th0}}{1 + a_{rthb}b_E + a_{rthl}l_E}$$

to give better results for width scaled devices

• Emitter resistance scaling almost ideally linear



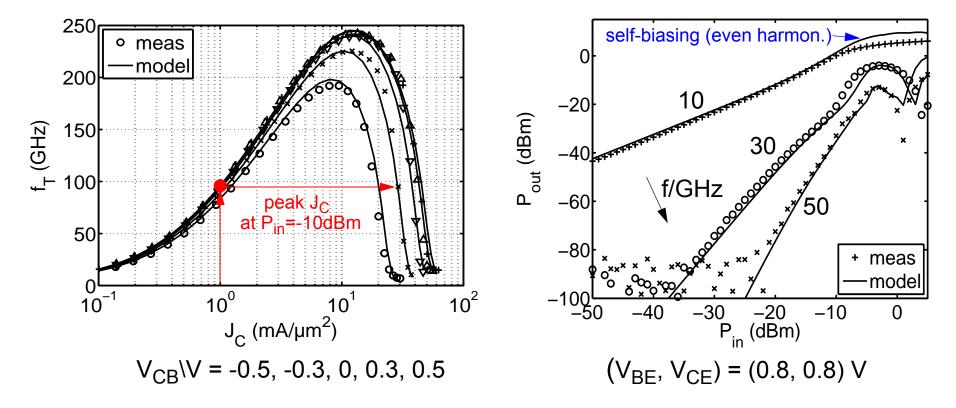
Correlated noise

- New formulation for correlated noise modeling
 - modeling at the transistor input, not output
 - flag flcono turns correl. noise on (1) and off (0)
 - conditional statement for calculation of square root

IF
$$2\alpha_{Qf} > \alpha_{iT}$$
 => $\tau_{b1} = 1 + j\omega\tau_f\sqrt{2\alpha_{Qf} - \alpha_{iT}^2}$ otherwise => $\tau_{b1} = 1$

- no use of nested ddt operators anymore
- **default** values of α_{Qf} (alqf) & α_{iT} (alit) have been changed to physically meaningful values
- Range of alqf & alit modified from [0:1] to (0:1]
- Generic method for constructing correlated noise networks see:
 - J. Herricht et al., "Systematic compact modeling of correlated noise in bipolar transistor", accepted in IEEE Trans. MTT, 2012.

Model verification


- standard characteristics: DC, small-signal y-parameters occasionally noise (often limited 26 GHz), sometimes load-pull & harmonics
 - => typically in (foundry) characterization labs
 - => issues for mm-wave & THz technologies
 - need (large) arrays for achieving suitable impedances => impact of interconnect parasitics
 - distortion/harmonics, load-pull: coupler & passive tuners limit frequency to below 50...75GHz
 - **on-wafer** S-parameter measurement: limited to 110GHz in foundries, rarely 220GHz, none at higher frequencies; pulsed AC difficult (bias Tees, meas. interval)
 - severe self-heating limits usable bias region for parameter extraction
 - => how to verify compact models beyond equipment limitations?
 - device simulation: small-signal, noise, large-signal characteristics
 limited to basic 1D or 2D device structure without major parasitic regions
 - use in-band distortion from two-tone load-pull => limited to magnitude
 - => use *physics-based* models for extrapolating beyond equipment limits

=> Really needed:

pulsed mag & phase (or time domain) measurement capability up to 1THz

High-performance SiGe HBT (cont'd)

B7HF500 (IFX) *high-performance* BEC transistor with A_{E0}=2x0.1x4.88μm² transit frequency output vs. input power

=> excellent agreement up to high input power and third harmonics

Summary

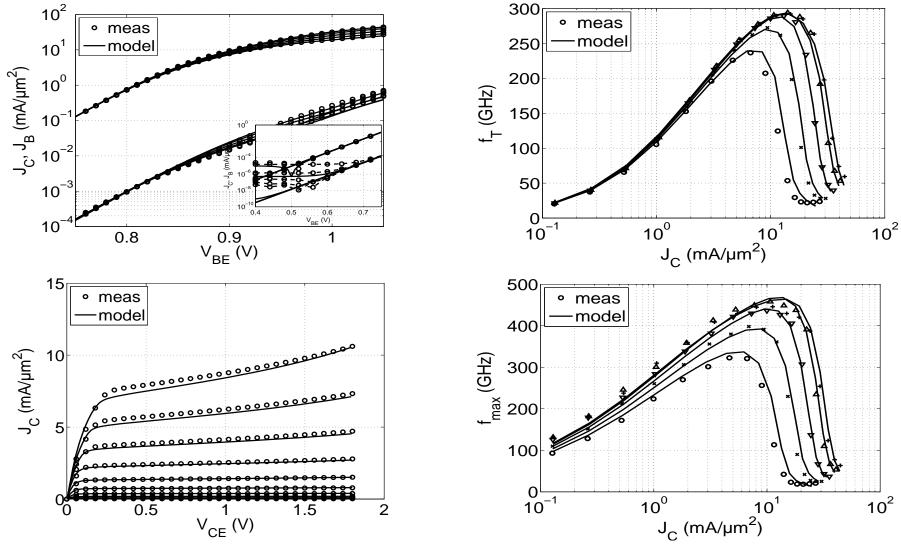
- Need for pushing process limits => accurate compact HBT modeling
- HBT compact modeling approaches (physics-based vs. behavioral models)
- HICUM/L2 latest developments
 - released as CMC model v2.33
 - available in all commercial circuit simulators and many industry PDKs
- Experimental examples for small and large-signal behavior
 - high-performance (low breakdown voltage) HBTs
 - similar results were obtained also for high-voltage (low speed) HBTs
 - used in industry (e.g. WCDMS, OFDMA, CD/DVD laser drivers, OC192, GSM and GPS receiver front ends, wireless entry systems, UWB, DBS(SAT), radar, OC768...)

Planned extensions and improvements

- improved substrate coupling network (incl. compact geometry scaling)
- BTB, TAT in BC SCR and BTB in forward-biased BE SCR
- reliability model
- additional model verification on benchmark circuits
- CPU time reduction

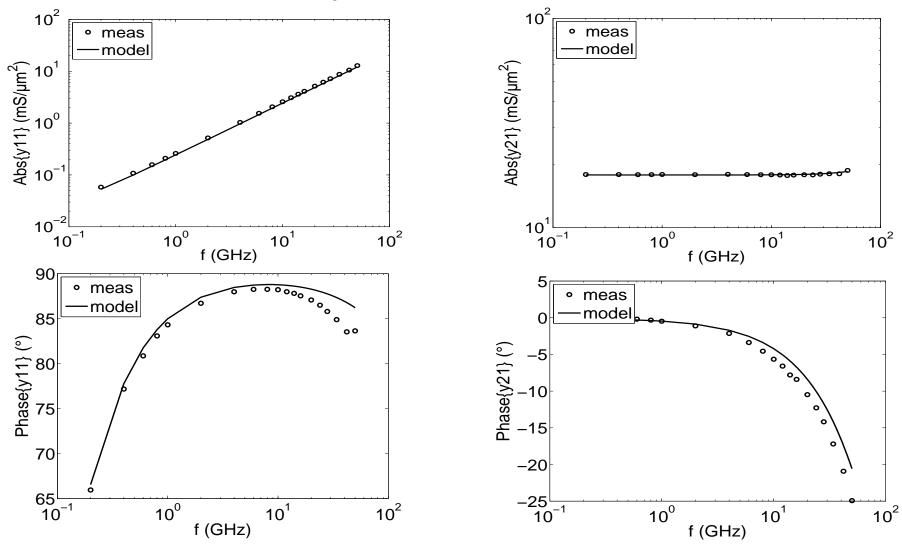
Acknowledgments

Compact modeling

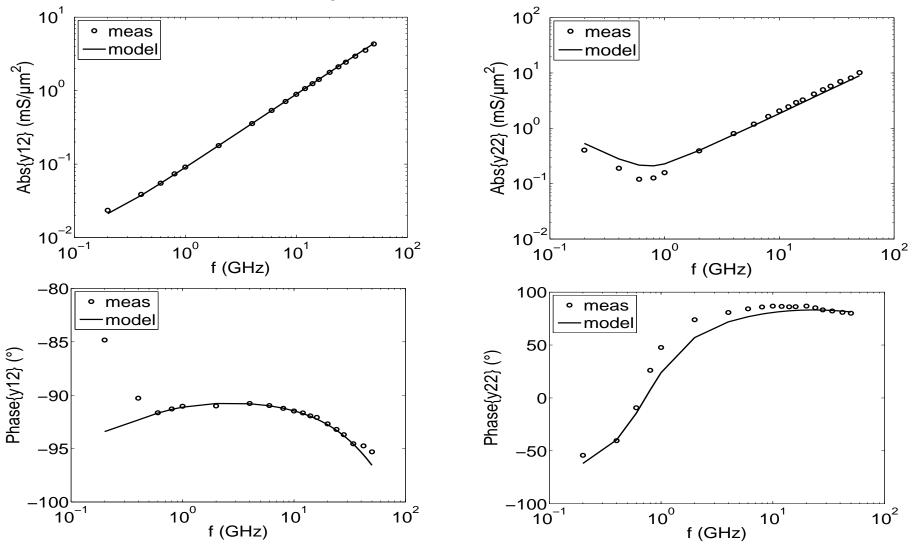

- EU FP7 IP DOTFIVE (financial support; SiGe HBT technology)
- EU Catrene RF2THz(SiSoC) (financial support; SiGe HBT technology)
- German Science Foundation SFB 912 (financial support; SiGe HBT technology)
- German Science Foundation SCHR695-3 (financial support; InP HBT research)

Users and user support

- IHP, Infineon, GCS, Skyworks, ST Microelectronics, TowerJazz (wafer supply)
- AWR, Cadence, Mentor Graphics (software)
- Agilent, AIST, Analog Devices, Atmel, IBM, ProPlus Solutions, Qualcomm, Renesas Electronics, RFMD, Samsung, Silvaco, SK Hynix, Synopsys, Texas Instruments (National), TelefunkenSemi, Toshiba, TSMC, UMC


Appendix

• SG13 (IHP) CBE transistor with A_{E0} = 8 x 0.12 x 1.1 μ m²: DC, f_T , f_{max}


Model verification (cont'd)

• SG13 (IHP) CBE HBT, A_{E0} = 8x0.12x1.1 μ m²: y-parameters at peak f_T

Model verification (cont'd)

• SG13 (IHP) CBE HBT, A_{E0} =8x0.12x1.1 μ m²: y-parameters at peak f_T

