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Introduction

Introduction

Major challenge for mm-wave and THz operation:

generating sufficient output power
solid-state THz sources (CW)
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=> need to exploit process limits by careful device and circuit optimization
=> need accurate compact models for active and passive devices
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Introduction

HBT modeling challenges

... to be addressed for mm-wave and THz circuit design
* self-neating => thermal stability, reliability
* breakdown => reliability, stability
 high-current effects & quasi-saturation => PAE, operating frequency
 substrate effects => PAE, jitter, operating frequency
* large-signal operation => distortion
« distributed effects: high-frequency, breakdown, thermal, substrate

* g, drop (technology dependent) => drive capability/circuit speed

ALSO: model verification issues ...

 process development is outpacing measurement equipment availability
=> how to verify large-signal modeling at multi-100 GHz?
(incl. distortion!!)
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Introduction

Modeling approaches

Criteria

Behavioral, X-par.

Physics-based

accuracy

high (within narrow ranges)

moderate to high over wide
range

numerical stability

compromised outside fitting
ranges

high (for standard models)

fabricated devices

need every possible
used in circuits

layout

only few devices
(6 HF trs, 6 test structures)

measurement effort

moderate to high

moderate to low

par. extraction effort

moderate to low (per device)
very high for library

moderate to low (per device)
very low for library

geometry scaling

inconsistent (typically)

consistent

predictive capability

none

moderate to high

statistical modeling

none (very high effort)

good to excellent

Goal: cover large variety of applications & circuit optimization (bias, T, f)

=> Physics-based model (cuts design cycle, supports process dev.)
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Introduction

Physics-based compact model

... definition
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each spatial region is represented by corresp. equivalent circuit element

« each EC element value is a function of bias, T, structural and physical
parameters
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Introduction

Physics-based compact model

... definition
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each spatial region is represented by corresp. equivalent circuit element
» each EC element value is a function of bias, T, structural & physical parameters

=> realized in HICUM/Level2 (from the beginning)
=> supports circuit optimization, statistical modeling, process development
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HICUM/Leve 2 extensions

HICUM/Level2 extensions
... recent development work during DOT5, DOT7, RF2THz

» transfer current and g,,, drop (technology dependent)

* bias dependence of reverse Early effect => g,,, degradation at low injection
* weight factor for low-current mobile charge => g,,, degradation at medium injection
» temperature dependence of weight factors

« explicit formulation of BC barrier effect

» flexible CE voltage dependence of critical current

temperature dependence of thermal resistance

simplification of AC emitter current crowding implementation

exact implementation of correlated HF noise (verified up to at least 500GHz)

simplification of input NQS effect description (and verification)

... and: reliable model parameter extraction methods
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HICUM/Leve 2 extensions

Complete HICUM/LZ equivalent circuit

(Verilog-A implementation)
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HICUM/Leve 2 extensions

Model features

* large-signal model
=> small-signal, noise, distortion follow automatically!!

* includes all relevant SiGe HBT related effects
(e.g. Ge dependence, BC barrier)

 physics-based
=> geometry scalable, predictive (statistical simulation) capability

« available in all mainstream simulators (ADS, ELDO, MWO, SPECTRE ...)

* vs. "special" models available in only a single simulator

« applied to every Si BJT and SiGe HBT process node since early eighties
=> spans 90(55)nm to 1um lithography, 10 to 400 GHz transit frequency

=> continuous model development and improvement
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HICUM/Leve 2 extensions

Transfer current

* g, degrades at low-injec-
tion for some technologies

X\« ¢ degradation is not related to
process generations
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=> g, degradation difficult to capture accurately with existing models

© M. Schroter 11



HICUM/Level 2 extensions

Transconductance
T— ‘ ‘ similar trend observed from device simulation
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HICUM/Leve 2 extensions

Transconductance

- h;g; voltage dependence hg;(Vgg) =

exp(u)—1
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=> very accurate modeling of transconductance
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HICUM/Level 2 extensions

AC emitter current crowding (Lateral NQS effect)
Issue: generates 2.3MB of code for derivatives!

» AC analysis by using - CIRiBi

Crei = fcrai(Cigi * Cici * Cgi + Cyci)

* Previous calculations of diffusion capacitances

CdEi — deEi and CdCi — dQiCi 15

dVee v, dVge

VBE

—
o

=> calculated using ddx-operator

Simulation time (s)

« Simplification avoiding ddx operator

%)}

dQqg; dify ¢ 1
. = : ~ — n =
CdEI dITf dVBE TfOVT and CdCI

T 5
V-|- v2.24 v2.30 v2.31

* gy, overestimation by i1/t partially compensated by using 15y instead of ¢
=> reduces code size (ADMS) to 0.3 MB(2.31)
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HICUM/Leve 2 extensions

Temperature dependence of thermal resistance

» For potential numerical stability reasons, modeling of Ri,(T) was
changed from nonlinear to linear formulation:

Ri(T) = Ru(To)(o) ™ to Ryy(T) = Rip(To)(L+ OpgnAT)
T

* For backward compatibility, the present implementation reads
Ri(T) = R(To)(L+ agpd ()™

where the previous term and parameter have still been kept

» Setting
- 0riy = 0 and Cryp, > O recovers the previous formulation

- drth > 0 and Cry, = 0 gives the new formulation

* Planned: no further support for previous implementation (and parameter
Crth) but requires to add prevention of negative Ry,
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Thermal and emitter resistance

Thermal and emitter resistance

... from a joint extraction

» Scaling of thermal resistance was changed from

 In(415/bp)

R
_ th0
" to Rth =

Run [ l+a .. b-+a.l
E rthb” E rthl"E

to give better results for width scaled devices

« Emitter resistance scaling almost ideally linear

27 o Extraction

> ---0rig model
0 —General model
0 2 4 6

1/AE (um?)
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HICUM/Leve 2 extensions

Correlated noise

« New formulation for correlated noise modeling

« modeling at the transistor input, not output Vo Vis
 flag flcono turns correl. noise on (1) and off (O p
9 1) O o o TS (O

 conditional statement for calculation of square root

*

nB

G1=1-0.5*0)2’Cf2 BfOCiTZ
- — : 2 Tc2=-joBrToyT
IF 20{‘Qf > Ot => Tp1 ~ 1+] (’OTfA/ZO(‘Qf —OiT noiseless

nB intrinsic

otherwise => Tbl =1 transistor

§>'01Vnsé> TCZB

» no use of nested ddt operators anymore \U/
VnC

- default values of oy (algf) & o (alit) have been
changed to physically meaningful values

« Range of algf & alit modified from [0:1] to (0:1]

* Generic method for constructing corre-
lated noise networks see:

« J. Herricht et al., "Systematic compact modeling
of correlated noise in bipolar transistor”, accepted
In IEEE Trans. MTT, 2012.

B1=1 +JCOTVBf(20€Qf'0€iT\)3

Ie2=jotioyT

£ )
|nB=V2q|jBEiA . o

noiseless
intrinsic

transistor
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Model verification

Model verification

standard characteristics: DC, small-signal y-parameters

occasionally noise (often limited 26 GHz), sometimes load-pull & harmonics

=> typically in (foundry) characterization labs

=> |ssues for mm-wave & THz technologies

need (large) arrays for achieving suitable impedances => impact of interconnect parasitics
distortion/harmonics, load-pull: coupler & passive tuners limit frequency to below 50...75GHz

on-wafer S-parameter measurement: limited to 110GHz in foundries, rarely 220GHz, none at
higher frequencies; pulsed AC difficult (bias Tees, meas. interval)

severe self-heating limits usable bias region for parameter extraction

=> how to verify compact models beyond equipment limitations?

device simulation: small-signal, noise, large-signal characteristics
=> limited to basic 1D or 2D device structure without major parasitic regions

use in-band distortion from two-tone load-pull => limited to magnitude

=> use physics-based models for extrapolating beyond equipment limits

=> Really needed:

pulsed mag & phase (or time domain) measurement capability up to 1THz
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Model verification

High-performance SiGe HBT (cont’d)
B7HF500 (IFX) high-performance BEC transistor with Agg=2x0.1x4.88um?

transit frequency output vs. input power
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=> excellent agreement up to high input power and third harmonics
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Summary

Summary

» Need for pushing process limits => accurate compact HBT modeling

« HBT compact modeling approaches (physics-based vs. behavioral models)

« HICUM/L2 latest developments

* released as CMC model v2.33
 available in all commercial circuit simulators and many industry PDKs

« Experimental examples for small and large-signal behavior

* high-performance (low breakdown voltage) HBTs
« similar results were obtained also for high-voltage (low speed) HBTs

» used in industry (e.g. WCDMS, OFDMA, CD/DVD laser drivers, OC192, GSM and GPS
receiver front ends, wireless entry systems, UWB, DBS(SAT), radar, OC768...)
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Summary

Planned extensions and improvements

improved substrate coupling network (incl. compact geometry scaling)

BTB, TAT in BC SCR and BTB in forward-biased BE SCR

reliability model

additional model verification on benchmark circuits

« CPU time reduction
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Summary
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Appendix

Appendix
« SG13 (IHP) CBE transistor with Agg=8 x 0.12 x 1. 1pm2 DC, fT, fmax
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Appendix

Model verification (cont’d)
« SG13 (IHP) CBE HBT, Agp= 8x0.12x1.1um?: y-parameters at peak f
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Appendix

Model verification (cont’d)

1

« SG13 (IHP) CBE HBT, Agp=8x0.12x1.1p
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