
7dot rhz seven

TOOLS AND ENVIRONMENT FOR SUB-THZ CIRCUIT DESIGN:

- WHAT CAN BE DONE FROM A MODELING PERSPECTIVE -

Open Bipolar Workshop 3 October 2013, Bordeaux

BERTRAND ARDOUIN - XMOD TECHNOLOGIES

OUTLINE

- INTRODUCTION
- CONTEXT
- SOURCES OF SIMULATION INNACURACY
 - CORE MODEL
 - SCALABLE MODELING & PARAMETER EXTRACTION
 - MEASUREMENTS
 - TEST KEY DESIGN
 - DESIGN / MODELING TARGET
- PROPOSED VALIDATION METHOD
- CONCLUSION

INTRODUCTION

GOAL OF THIS WORK:

- Identify modelling issues to improve circuit design environment
- Set up model validation methodology @ mmWave / Sub THz frequencies

Designer's feedback is very important but often does not allow to track down the source of the problems (Many possible sources of innacuracy exist)

- Designers may not have modeling background
- Model engineers don't know the designer's circuits
- Even small circuit building blocks may be too complex to identify root cause

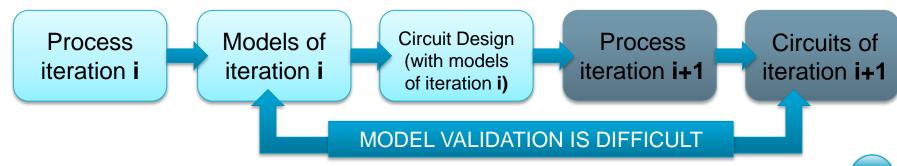
CONTEXT

 DOTSEVEN FP7 PROJECT Towards 0.7 Terahertz Silicon Germanium Heterojunction Bipolar Technology

This is a research project context Concurent iterations in :

- process technology
- Circuit design
- Modeling

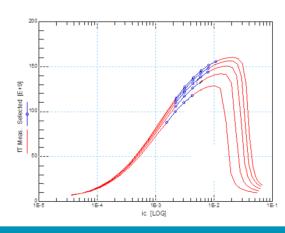
- Broadband ADCs with 50-100GS/s and →25GHz signal bandwidth at 5-6 bit resolution
- 100 Gb/s wireless data transmission
- satellites



- →120 GHz industrial sensors and automation
- Automotive radars (affordable vehicle and road safety for everyone)

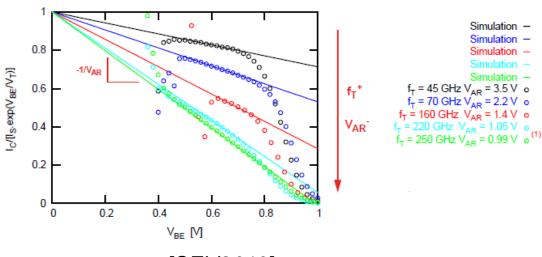
- Secure Mass transportation (security screening, mmWave person scanning)
- Heath care and biology
- Medical equipment
- · Patient monitoring
- Tissue and genetic screening

Illustration of mm-Wave and THz applications



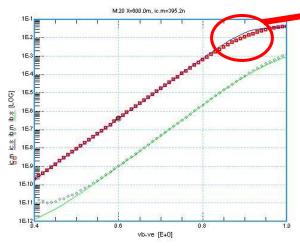
CORE MODEL

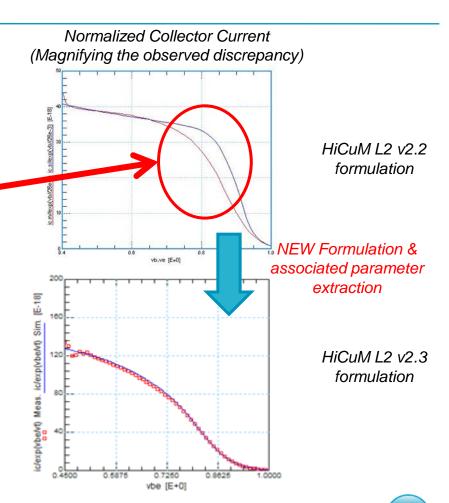
- Why HiCuM model in the beginning (for SiGe HBTs) ?
 - Accurate physics based capacitance model (intrinsic/perimeter/oxide & metal)
 - base current ideality factor independent of collector current (no BETA)
 - Transfer current described via self consistent GICCR [SCHR1993]
 - Accurate Kirk effect / quasi-saturation description
 - Self consistent AC/DC formulation (based on charges)
 - Self consistent Early effect (output conductance)
 - Bandgap engineering accounted for through meaningful weighting factors
 - Accurate transit time model (rapid f_T falloff @ high current and voltage dependence)
 - Self Heating model
 - Base resistance formulation
 - Substrate current & parasitic substrate network
 - ... and more


For more details cf. [SCHR2005]

CORE MODEL

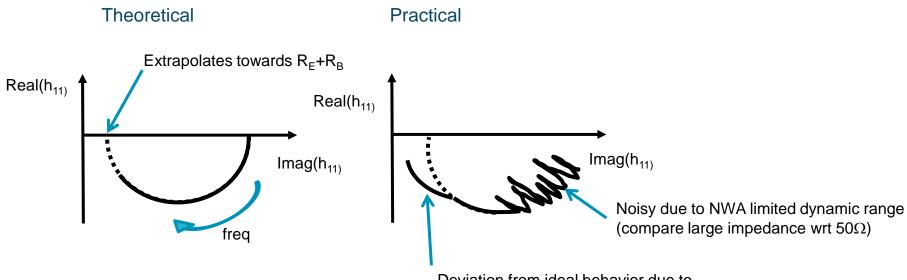
- HiCuM model in DOT7 (& DOT5)
 - Continuous improvements based on leading edge processes
 - <u>Example:</u> steep Ge profiles in the base of HBTs lead to increased (& bias dependent) reverse Early voltage -> led to new HiCuM L2 v2.3 formulation

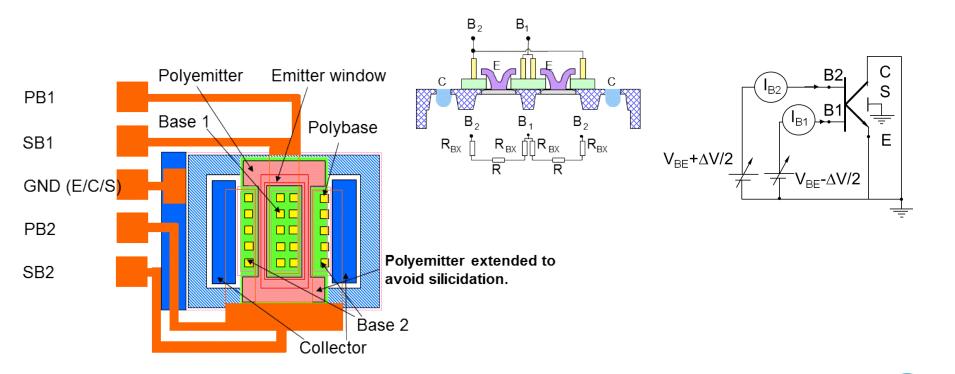




CORE MODEL

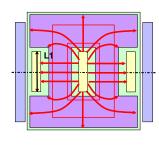
- Example (cont'):
 - Transition between low & high current densities is critical

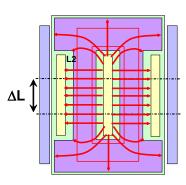

Forward Gummel Plot $I_C(V_{BE})$, $I_B(V_{BE})$

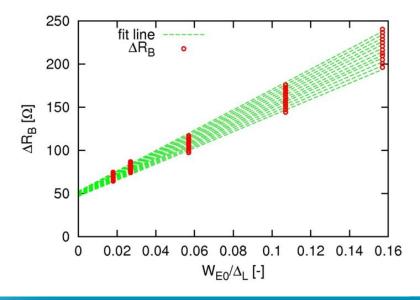

Some critical model parameters are difficult to extract from HBT measurements: **Example**: base resistance extraction from impedance circle method (e.g., [KLOO1999])

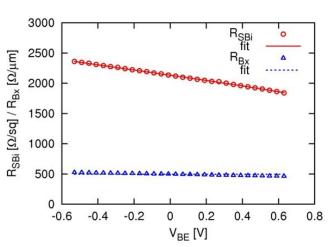
Deviation from ideal behavior due to distributed nature of base resistance

Use specific test structures for physics based parameter extraction **Example**: Tetrodes for base resistance [REIN1991]






Use specific test structures for physics based parameter extraction

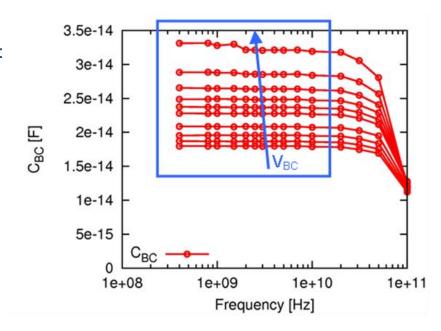

Example: Tetrodes for base resistance

- Two different length to remove 2D effects
- Several widths to separate intrinsic and extrinsic base resistance from geometry variation

Scalable model principle

Example 1: Junction capacitances

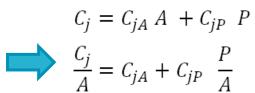
From de-embedded S parameters measurements, obtain capacitance versus frequency then apply averaging:

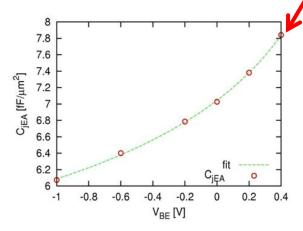

$$CBE = \Im \frac{\left(Y_{11} + Y_{12}\right)}{\omega}$$

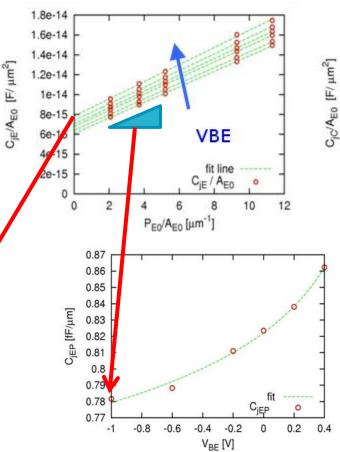
$$CBC = -\Im \frac{\left(Y_{12} + Y_{12}\right)}{2\omega}$$

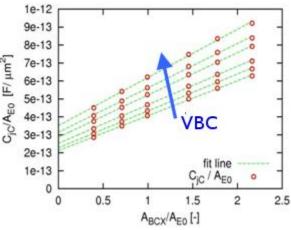
$$CCS = \Im \frac{\left(Y_{22} + Y_{12}\right)}{2\omega}$$

$$CBC = -\Im \frac{(Y_{12} + Y_{12})}{2\omega}$$


$$CCS = \Im \frac{(Y_{22} + Y_{12})}{\omega}$$




Scalable model principle **Example 1**: Junction capacitances

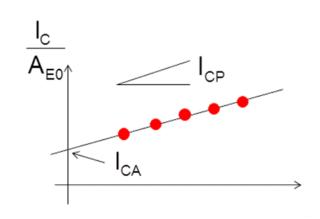

$$C_j = C_{jA} A + C_{jP} P$$

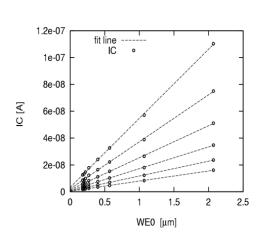
From slope and Y intercept, obtain capacitance components versus bias

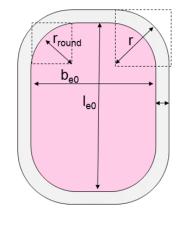
2 different physics based sets of parameters (built in voltage, grading coefficient, specific capacitance) each related to well defined doping region

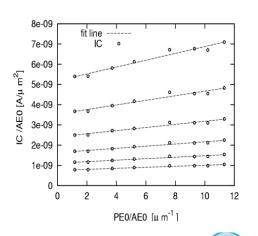
Scalable model principle

Example 2: collector (transfer) current

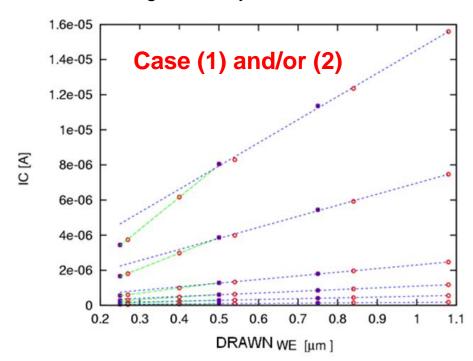

Different principle:


- Similarly extract effective parameters from geometry
- But merge 2 different regions (intrinsic / perimeter) into a single effective area

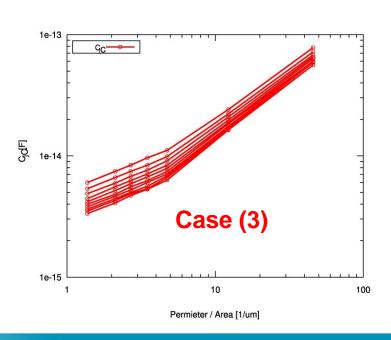

$$I_{\text{C}} = I_{\text{SA}} \cdot A_{\text{B0}} + I_{\text{CP}} \cdot P_{\text{B0}} = I_{\text{CA}} \cdot A_{\text{Beff}}$$


$$A_{\text{Beff}} = A_{\text{BD}} + \gamma_{\text{C}} P_{\text{BD}}$$

$$\gamma_{C} = \frac{I_{SP}}{I_{SA}}$$



- Problem occurs when scaling is compromised
 - 1. Vertical doping (or Ge) profile not constant with geometry
 - 2. Real (silicon) junction dimension unknown or not following drawn dimensions
 - 3. De-embedding / test key issue

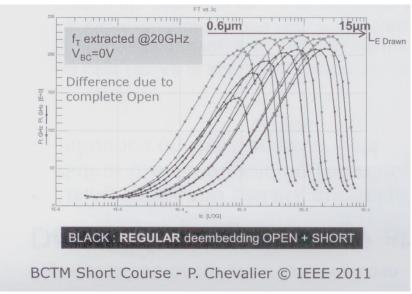

Observed issue with width scaling:

- If case (1), this is "real" scaling issue not a measurement problem
- If case (2) this is a "false" scaling issue

Difficult to answer without SEM pictures

- Problem occurs when scaling is compromised
 - 1. Vertical doping (or Ge) profile not constant with geometry
 - 2. Real (silicon) junction dimension unknown or not following drawn dimensions
 - 3. De-embedding / test key issue

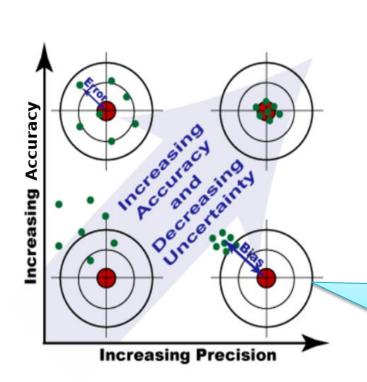
Short transistors (in parallel) Long transistors (in parallel)


Observed issue with Junction capacitance scaling due to test structure problem and inconsistency with DUMMY OPEN Backend connection lines (not scalable) are not fully de-embedded

Measurements of short transistor become more **precise** but less **accurate**

- Problem occurs when scaling is compromised
 - 1. Vertical doping (or Ge) profile not constant with geometry
 - 2. Real (silicon) junction dimension unknown or not following drawn dimensions
 - 3. De-embedding / test key issue

Case (3)

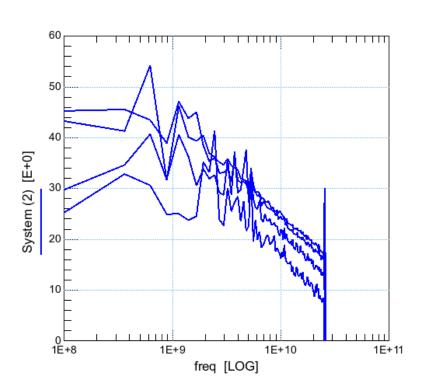


Observed issue due to de-embedding: where to stop de-embedding (M6 or M1?)

See later paragraph on de-embedding

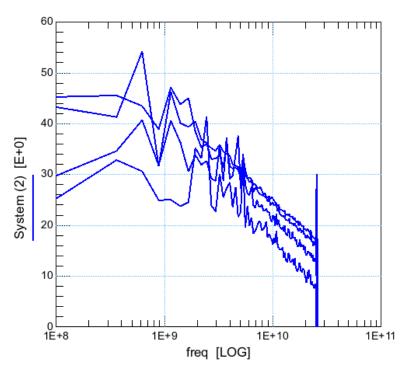
source N. Derrier , P. Chevalier, ST

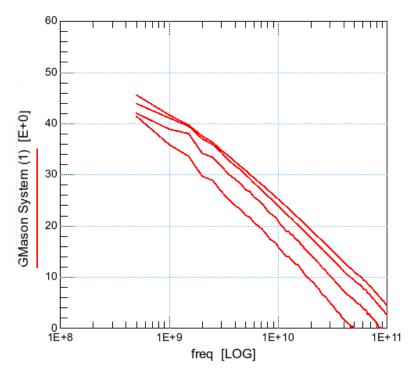
The marketing guys want more of your over optimistic measurements

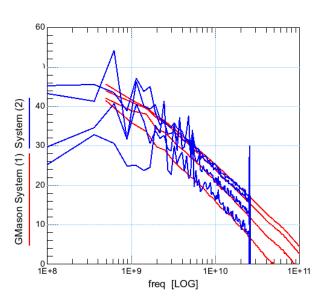


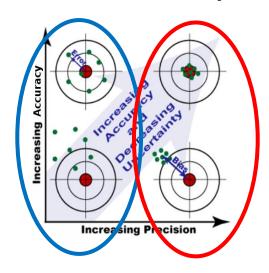
This case is the worst possible case: Results "look" good but have systematic error

Absence of measurement noise, nice trend and reproducibility can be a misleading Indicator




MASON's Gain Measurement: can be quite Noisy!

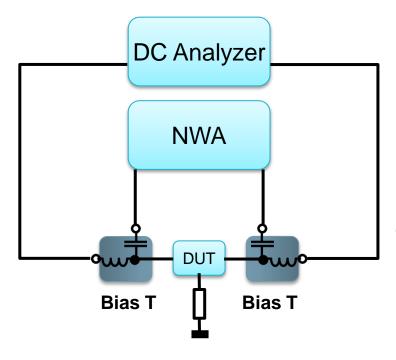

MASON's Gain measurement on another test bench: looks much better!
IN YOUR OPINION WHICH ONE IS BETTER?



When Averaged, Both Give Same Result: They have same accuracy

Red: precise
Blue: not precise
When averaged,
both give same result but:
Can't conclude on
ACCURACY

Absence of measurement noise, nice trend and reproducibility can be a misleading Indicator


"ACCURACY" mostly depends on:

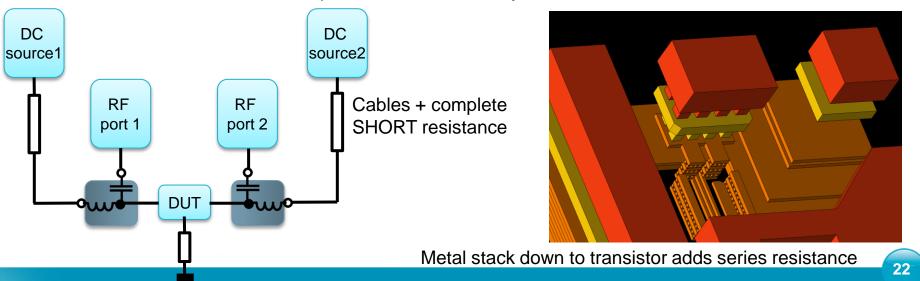
- Calibration (Type, Standards, environment, etc.)
- De-embedding quality & strategy (up to where do we de-embed?)
- Test key design (mostly consistency between device & Dummies)

Nothing straight forward to verify

Even DC measurements are not straight forward

DC path is usually longer, with more series resistance due to bias Tees Ground return path has to be considered too

 J_{C} @ peak $f_{T} \sim 10 \text{mA/} \mu \text{m}^{2}$ $A_{E} = 0.2 \text{ x } 10 \mu \text{m}^{2}$ $I_{C} \sim 20 \text{ mA}$ @ peak f_{T}

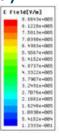

Consider 1Ω additional series resistance in the emitter DC path $\Delta V \sim 20 \text{ mV}$

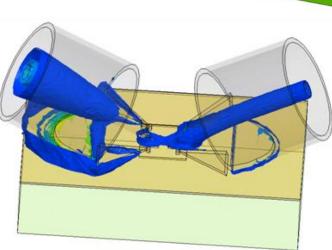
 $I_{\rm C}$ has exponential dependence on $V_{\rm BE}$: exp(-20mV / $V_{\rm T}$) ~ factor 1/2 @ room temperature

Even DC measurements Are Not Straight Forward

- Cables, access lines and vias series resistance down to the DUT (on chip) in the DC path need to be considered
- They are removed from AC path by calibration but are unavoidable in DC
- The only solution is to modify the simulation set up (for model / measurement comparisons) in order to emulate bias tees.
- Need to measure the complete SHORT dummy in DC!

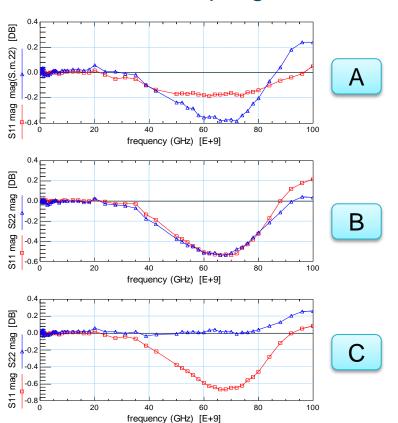
Probe bottom coupling with material underneath

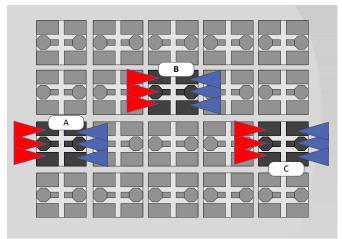

Environment below the probes matters


Impact of test structures surrounding

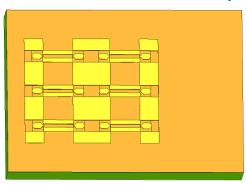
Impact on calibration (Calibration on ISS /

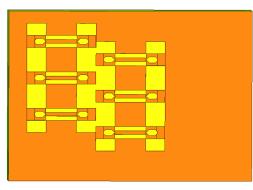
Measurement on Silicon Wafer)

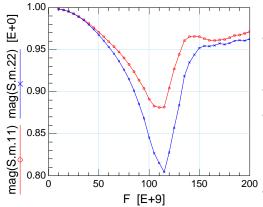

On-Wafer Calibration [MANG2006] [DERR2012] (or similar) required at high frequency or Ground plane on ISS?

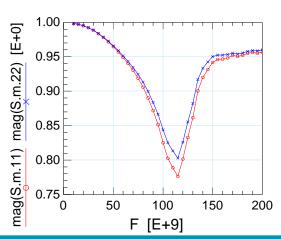


Probe bottom coupling with material underneath

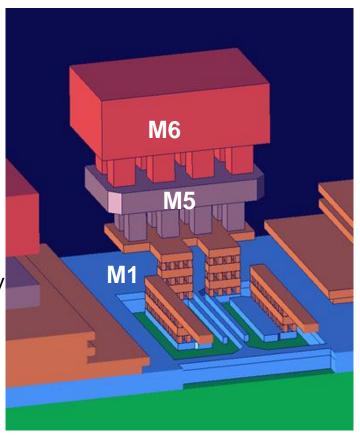



3 identical OPEN DUMMIES => SYMETRICAL STRUCTURE S_{11} and S_{22} differ depending on position (i.e. depending on surrounding environment)


- · Ground plane everywhere or/and
- · Interleaved structures or/and
- · Ground plane extension below the probes or/and
- · Don't put critical structures close to chip edge

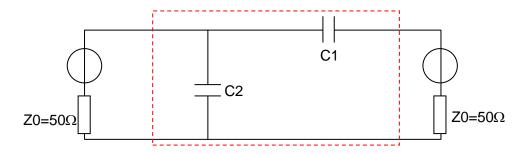


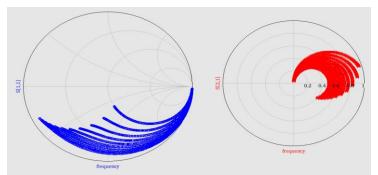
Probe bottom coupling with material underneath



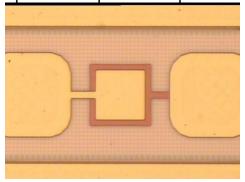
- Ground plane everywhere or/and
- Interleaved structures or/and
- Ground plane extension below the probes or/and
 - Don't put critical structures close to chip edge

- De-embedding
 - De-embeding up to M6 ("regular" Open)
 - De-embedding up to M2 (ITRS compliant)
 - De-embedding up to M1
- Implications for OPEN/SHORT dummies
 - Complete OPEN/SHORT are more accurate but have more distributed effects
 - Distributed dummies modeled by lumped elements lead to unphysical de-embedding @ high frequency
 - Need Multi-Steps de-embedding (use after Pad & top metal de-embedding)
 - Or (better) Scalable de-embedding (need shielding to prevent substrate coupling)

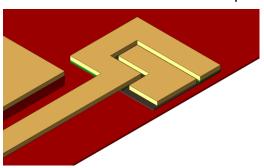



- De-embedding verification is difficult due to lack of known reference
- All papers on de-embedding show different methods comparisons and physical trend analysis
- Would be better to use simulations (EM)
- But indeed, active devices can't be simulated with EM simulators
- New paradigm: find a suitable reference
 - Passive device (can be simulated with EM simulator)
 - Behavior not too far from transistors so that S parameters are in the same range of magnitude and phase (so that conclusions can be transposed to transistors)
 - Behavior is reasonably predictable from low frequency measurements
 - Behavior does not depend on critical fabrication steps (good matching / reproducibility)
- This is the idea behind the virtual load
 - Simulate the reference embedded in pads & access lines, simulate de-embedding dummies, apply de-embedding on simulations then compare with reference simulation alone: observed error gives the accuracy of de-embedding method

Virtual LOAD: original idea



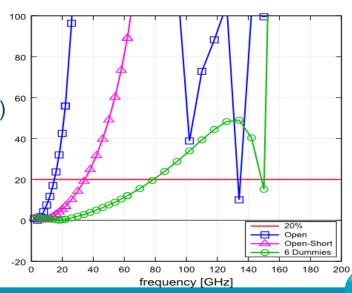
S parameters of the virtual load simulated with different C1/C2 ratios



S11 pretty much similar to S11/S22 of transistors S21 has same trend as S12 of transistors

The virtual load is a metal plate capacitor C1. Bottom plate has a parasitic capacitance C2

Improved virtual load (half structure) to allow access on both sides with top metal



- 3D FEM EM simulations of virtual load with pads
- 3D FEM EM simulations of de-embedding dummies (OPEN, SHORT, LINE)
- 3D FEM EM simulations of virtual load (w/o pads)
- Apply different de-embedding methods to the simulations and compare results with simulations of the intrinsic device
- Error between de-embedded device with respect to reference is shown for simple OPEN,
 OPEN / SHORT and "6 dummies" de-embedding methods

[RAYA2013]

CONCLUSIONS are backend & layout dependent

- The shown results are not DOT7 (under-progress)
- Simple OPEN valid up 15GHz
- OPEN/SHORT valid up to 40GHz
- "6 dummies" valid up to 80GHz

TEST KEY DESIGN

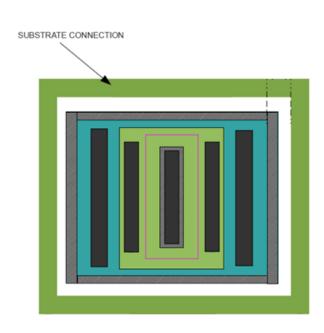
Models refer to what is measured on the test chip: Designers may not use exactly the same layout

Metal Routing:

- If de-embedding only up to M6: issue since transistor model contains M1-M5 capacitances, even if transistor is routed in M1 only
- If de-embedding up to M2/M1: routing parasitics accounted for by parasitic extractors (but what is the accuracy at mmWave frequencies in the presence of complex 3D EM effects? How to verify model accuracy for modeling engineers? If discrepancy is found what is root cause (model or parasitic extractor?) Initial schematic simulations too far from real performance? Inflation of modeling flags, i.e., inflation of model validation needs!

Layout of test keys can't be dissociated from De-embedding strategy!

(Need strong cooperation of modeling team, PDK team, Measurement team, ...)



TEST KEY DESIGN

Models refer to what is measured on the test chip: Designers may not use exactly the same layout Substrate ring:

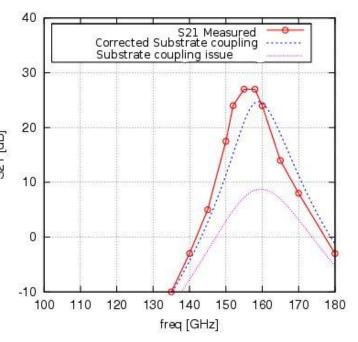
- HBT Test structures usually have a substrate ring
- Designers need more flexibility so that Pcells have no substrate ring (or optional substrate ring)
- Problem: intra / inter device substrate coupling is critical a mmWave frequencies
- Substrate coupling is a complex 3D problem not taken into account by post layout extraction tools

See later in circuit design section

DESIGN / MODELING TARGET

Designers don't have same target as modeling engineers:

- Modeling engineers want consistent comparisons between measurements & models
- Designers want working circuit with best possible performance


DESIGN / MODELING TARGET

Circuit example:

- Initial Model /measurement discrepancy of 7dB
- Bias offset in measurement setup not in simulation
 + simulation issue due to S-parameters block
 revealed problem was even worse (17dB)
- After a lot of work, problem could be tracked down to substrate coupling issues
- Errors can compensate each others
- Extremely difficult to debug
- Questions remains for this circuit example:
 - Passive devices, integrated transformer, process generation i+1, input/ouput baluns, bias adjustment, simulator issues, substrate connections, process variations, other layout specific issues

Corrective action needed in verification methodology!

160 GHz 3 stage differential LNA, with integrated baluns (Ullrich Pfeiffer et al, DOT5)

Many possible issues in the complex task of modeling:

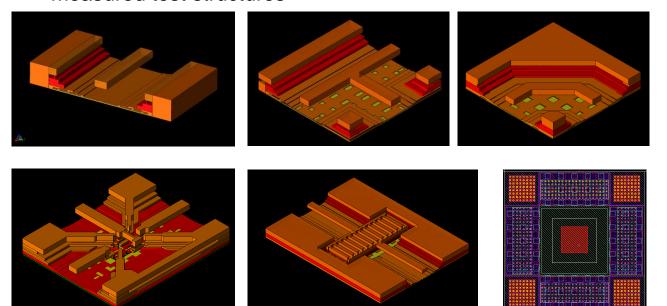
- Measurement / de-embedding / Test structure design
- Model limitations (race between model development & technology)
- Parameter extraction errors / Scaling issues

Final validation step is a must!

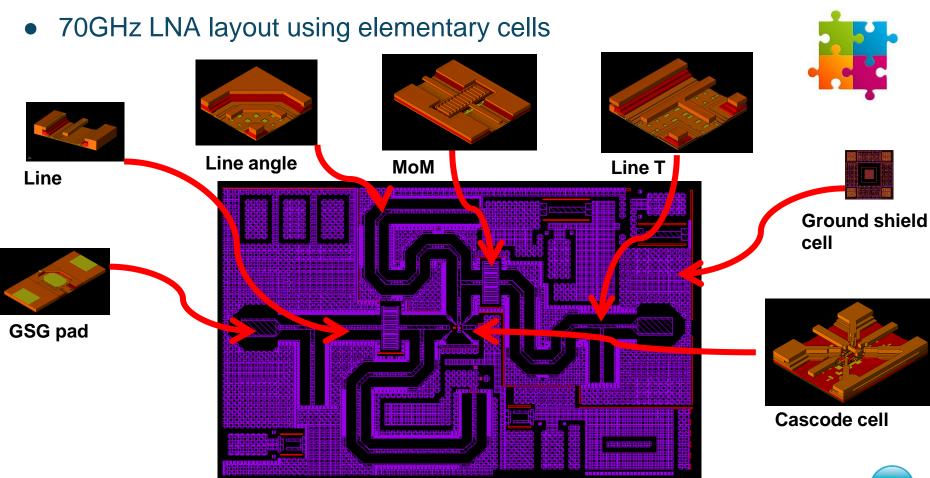
Validation on circuits (done by design teams) is difficult (even simple circuits)

- Measurability (Multi-stage, differential, variability, biasing, frequency band, ...)
- Dependence on other devices (passives, transmission lines, baluns, transformers)
- Custom layout (variations from Pcells, specific T lines, in house EM simulations, ground planes continuity, ...)
- Etc.

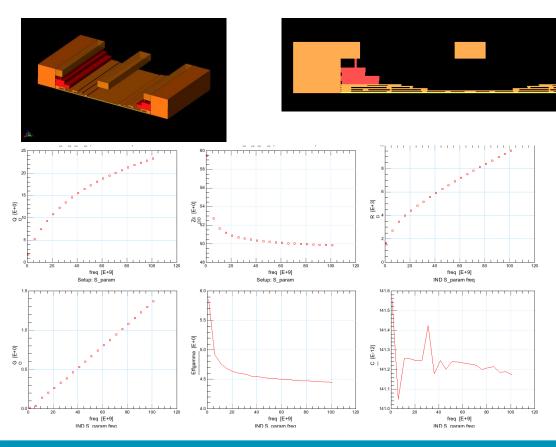
Need specific circuits for sub-THz & mmWave model validation:

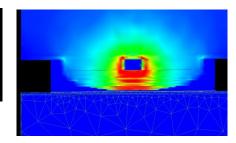

- Designed by modeling team (need to know circuit details)
- Simple circuit blocks, tailored for measurability
- Sensitive to the model to be verified (e.g. HBTs)
- Hierarchy of circuits (Small signal / noise, large signal, highly non linear)
- Extra components (passives, Tlines, etc.) need to be well known (EM simulations) or have limited impact
- HBT samples (of exactly similar layout than the one used in the circuit) available on the SAME wafer to be re-measured & re-modeled

This is the required condition to make fair comparisons

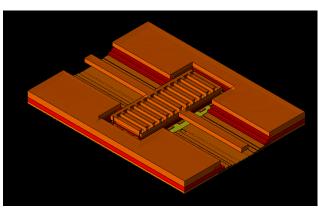

- Requires measurements and modeling skills
- Requires Design skills
- Requires EM simulation skills

- Example of ongoing work: Circuit blocks based on "puzzle parts"
 - Each part is (metal) density compliant : don't use automatic filling / cheesing
 - Each part is simulated with EM simulator (3D generated from automatic scripting from GDSII) and available as single element on chip
 - Use ground shield everywhere to avoid substrate coupling and differences wrt measured test structures

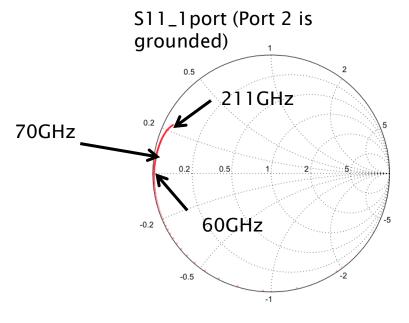




Transmission line work

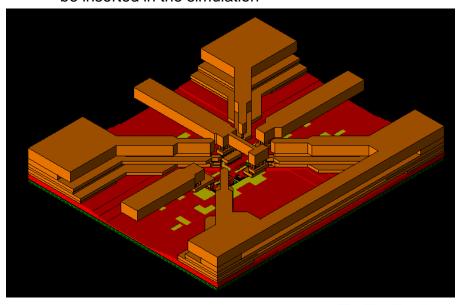


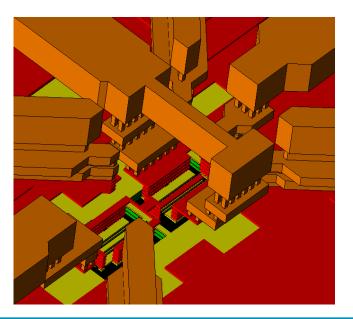
- Optimized design to avoid metal holes in the "visisble" return path of the ground shield (EM simulation closer to reality)
- · EM simulation of small length
- Compact model from EM simulation
- Measure single structure on chip within HF pads (and de-embedding structures)
- · Re-calibrate EM simulator for next run


MoM capacitor work

- · Short circuit around 60GHz
- Input/output have same cross section than the T line

"Elephant" size margins to make sure the passives won't play a negative role in the verification process




MoM capacitor work

- Cascode backend simulation up to 210 GHz
- Input/output have same cross section as the transmission line
- Result is multi-port S parameter block to be inserted in the simulation

Do not rely of parasitic extractor

CONCLUSION

- Many sources of model inaccuracy are difficult to identify
- Thorough modeling work may not be enough
- Need modeling specific circuit blocks for validation at Sub-THz and mmWave frequencies
- Proposed methodology to design those necessary circuit blocks
 - Obtain sensitivity with respect to the device / model to validate and reduce sensitivity to other devices
 - Reduce mismatch between design environment and modeling environment (layout differences, simulation tools, process variations, ...)
 - Design choices allow splitting the verification problem into smaller independent problems
- This work is on-going: still a lot of lessons to learn
- Verification work to be done
- Add new circuit blocks (increase frequency, add mixers, oscillators, ...)
- Add circuits with specifications closer to real designs

AKNOWLEDGEMENT

The Author would like to thank the DOT7 and RF2THZ partners

This work is supported by the European Commission through FP7

REFERENCES

- [CELI2010] "A Novel Low-bias Charge Concept for HBT/BJT Models Including Heterobandgap and Temperature Effects Part II: Parameter Extraction and Verification", Didier Céli, Zoltan Huszka* and Ehrenfried Seebacher*, 10th HICUM Workshop at TuD, Dresden, Germany, September 24, 2010
- [SCHR1993] M. Schroter, M. Friedrich, and H.-M. Rein, " A generalized Integral Charge-Control Relation and its application to compact models for silicon based HBTs", IEEE Trans. Electron Dev., Vol. 40, pp. 2036-2046,1993.
- [REIN1991] H.-M. Rein, M. Schroter, "Experimental determination of the internal base sheet resistance of bipolar transistors under forward-bias conditions", Solid-State Electron., Vol. 34, pp. 301-308, 1991.
- [SCHR2005] M. Schröter, "High-frequency circuit design oriented compact bipolar transistor modeling with HICUM", IEICE Trans. on Electronics, Special Issue on Analog Circuit and Device Technologies, Vol. E88-C, No. 6, pp. 1098-1113, 2005
- [KLOO1999] W.J. Kloostermann et al, "Improved extraction of base resistance from small signal High Frequency admitance measurements", BCTM 1999, pp. 93-96
- [DERR2012] N. Derrier, A. Rumiantsev et al., "State-of-the-art and Future Perspectives in Calibration and De-Embedding Techniques for Characterization of Advanced SiGe HBTs featuring sub-THz fT/fMAX" in Bipolar/BiCMOS Circuits and Technology Meeting, 2012. BCTM 2012. IEEE, 2008.
- [RAYA2013] C. Raya et B. Ardouin « Méthodes de caractérisation en hautes fréquences des technologies de circuits intégrés en silicium dédiées aux applications Térahertz et sub-Térahertz », URSI JS2013, France
- [MANG2006] Alain M. Mangan, et al., Split-Thru De-Embedding: Direct Extraction of Parasitics from Scalable Transmission Line Models in IEEE Transactions On Microwave Theory and Techniques, Vol. X, No. Y, 2006.
- [RAYA2008] C. Raya, "Modélisation et optimisation de transistors bipolaires à hétérojonction Si/SiGeC ultra rapides pour applications millimétriques," Ph.D., University of Bordeaux, Bordeaux, 2008.