CATRENE – CT209 – RF2THZ SISOC

Title: BiCMOS Integration of Photonic Components

Author: Dieter Knoll

Affiliation: IHP, Frankfurt (Oder), Germany

Open Bipolar Workshop 3 October 2013, Bordeaux

innovations for high performance microelectronics

Leibniz-Institut für innovative Mikroelektronik

Outline

- Introduction
 - > RF2THZ motivation for an EPIC (=> Electronic Photonic IC) technology
 - Motivation beyond RF2THZ-demo application
- ☐ Choice of EPIC technology
 - Photonic devices that are to be integrated
 - FEOL integration vs. other approaches of photonic device integration
 - Baseline for photonic device integration: BiCMOS vs. CMOS
- ☐ Substrate issue: SOI (Photonics) vs. Bulk (BiCMOS)
 - → local-SOI approach
- ☐ Ge photo-detector integration

Outline (cont'd)

■ Photonic BiCMOS

- Process flow
- Design features
- BiCMOS yield and parameter behavior
- Photonic device performance
- What next?

☐ First EPIC demonstrators in Photonic BiCMOS

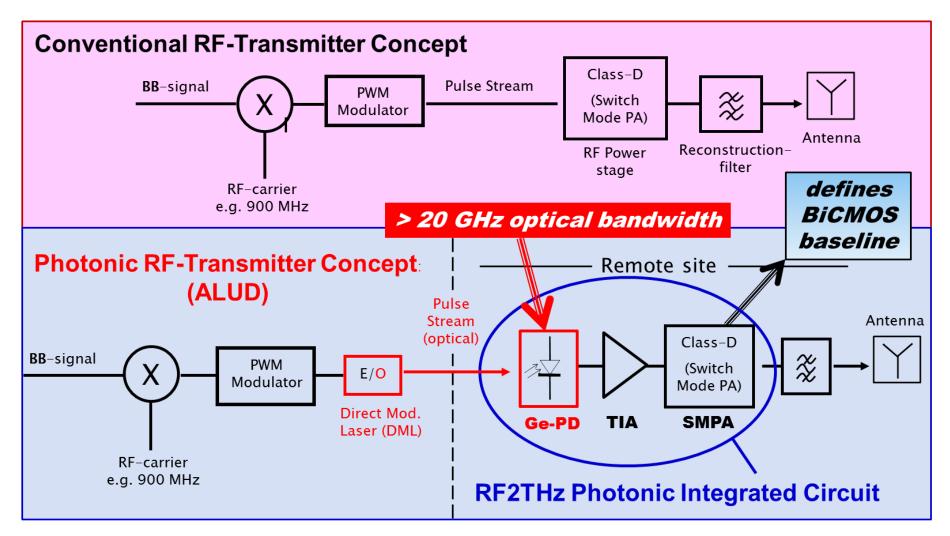
- 10Gbit/sec Silicon modulator with driver (SG25H3)
- 20Gbps receiver: Ge-PD + TIA (SG25H1)
- **□** Summary and conclusions

Introduction

- ☐ European (CATRENE) project
 - ➤ More than 30 companies, institutes, universities
 - For German partners, like IHP & TU Berlin: January 2012 -- December 2014
 - > IHP and TUB funding by BMBF (Federal Ministry of Education and Research)
- 3 big work packages dealing with technology development
 - ST: WP1.1 "55 nm SiGe BiCMOS process integration" → Development of 300mm SiGe BiCMOS technology with 300/400GHz f_T/f_{MAX} SiGe HBT and 55nm CMOS (B55)
 → Previous talk
 - ➤ NXP: WP1.2 "Elite passive devices integration" → Development of elite passive devices (inductors, TL's, ...) and integration in 0.25µm SiGe BiCMOS technology
 - ► IHP: WP1.3 "Photonic devices integration" → Development of photonic SiGe BiCMOS technology with front-end (FEOL) integration of photonic components (including Ge photodetector) → This talk

RF2THZ motivation for EPIC technology

Demo2:


Photonic RF-Transceiver for 3G/4G Base Transceiver Station (BTS)

- **□** Low-cost remote RF-antenna unit for femto cell BTS*
 - ➤ Reducing hardware effort by EPIC integration combining Ge-PD with SiGe BiCMOS TIA and switch mode PA (TX: 15dBm @ 900GHz)
 - > Status:
 - System level requirements defined
 - SiGe BiCMOS technology identified
 - Electrical test structures realized
 - First EPIC fabrication will start November this year

* More details in the afternoon talk (3:20 pm): "Application Scenarios from RF2THZ" (W. Templ)

Photonic RF-transceiver for 3G/4G BTS

IHP SiGe BiCMOS baseline choice: SG25H1 vs. SG25H3

Investigated components from IHP technologies SG25H1 and SG25H3 under ideal driving signal conditions ($\tau_{rise,fall} = 0$) using PWM modulated rf signal ($f_c = 920$ MHz):

BiCMOS	Transistor	f _T (GHz)	BV _{CEO} (V)	Vcc (V)	Pch (dBm)	η ch (%)	RI (Ω)
SG25H1	50 x npn200_1	200	2.4	1.5	4.4	38.2	50
SG25H3	100 x npnh3_shp1	120	2.4	1.5	4.9	40.3	50
SG25H3	20 x npnh3_MV	50	4.5	3.5	5.7	55.5	580
SG25H3	140 x npnh3_MV	50	4.5	3.5	8.4	38.3	110
SG25H3	100 x npnH3_HV	30	7	5	9.9	41.2	200

- pnH3_HV device (BV_{CEO} = 7 V) provides highest output power → chosen
- Switches total efficiency was >70%, but for channel efficiency (ηch=Pch/Pdc), best value (55 %) has been achieved by combining npnH3_MV devices
 - Reduction of efficiency caused by Vdd not returning to zero between short pulses
- ➤ Re-characterized npnH3_HV with 2 GHz PWM modulated signal:

BiCMOS	Transistor	Vcc (V)	Pch (dBM)	η ch (%)	RI (Ω)
SG25H3	80 x npnH3_HV	5.4	6.3	28.9	180

Motivation for EPIC technology beyond this project

General objectives to bring optical functionalities to electronics integrated circuits J.-M. Fedeli, "Integration of silicon photonics with electronics"; Photonics -PhD course prepared within FP7-224312 Helios project Increase the performance of photonics with embedded electronics Increase the data transmission speed between cores with photonics

- → Enables new or improved applications in fields such as:
- Communication
- Measurement instrumentation
- **.**...

Much more "motivation" details can be found in the ST and Analog Devices papers in this year's BCTM "Emerging technologies" session

→ IHP will extend MPW offers (incl. small volume production) over PIC to EPIC fabrication ASAP

IHP MPW technology roadmap: BiCMOS baselines

- **Development** (no access for external customer)
- **Early access** (MPW access, electrical parameters stable, not complete fixed)
- Qualified Space evaluated

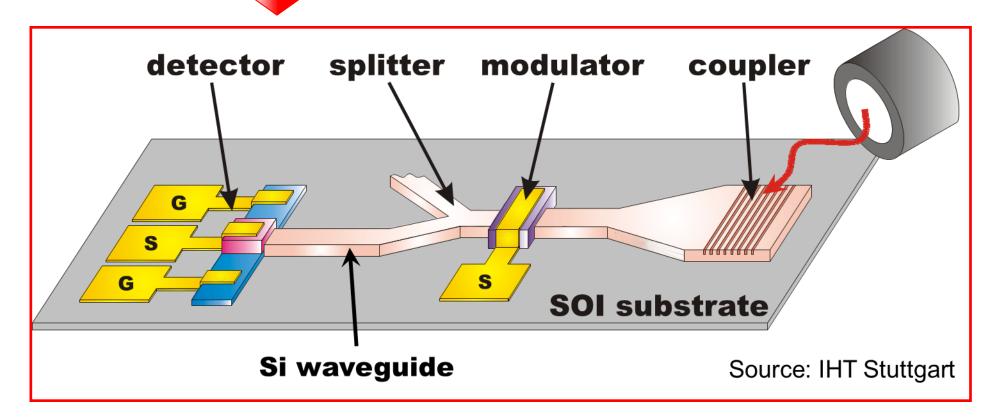
BiCMOS Process	Features		2013				2014				2015	
	f _T /f _{max} (GHz)//BV _{CEO} (V)	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	H1	H2	→
SGB25V	75/95//2.4; 45/90//4; 25/70//7											
SGB25RH								0	٠,			
SG25H3	120/140//2.4; 110/180//2.3; 45/140//5; 30/80/7						arn'	et				
SG25H1	190/190//1.9; 180/220//1.9						Ste					
SG13S	250/300//1.7; 50/120//3.7					640						
SG13RH												
SG13G2	300/500//1.6 ; no digital libs											

IHP MPW technology roadmap: Modules

Development Early access Qualified

*LBE: Local backside etching

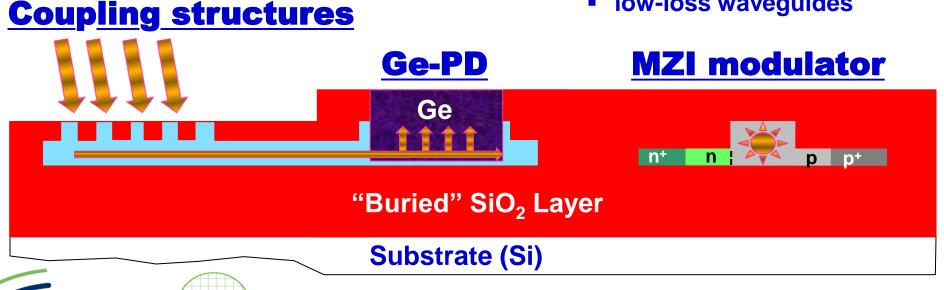
Module (baseline)	Features	2013			2014				2015		16	
	f _T /f _{max} (GHz)//BV (V)	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	H1	H2	→
GD (SG25V)	NLDMOS: 18/48//22 PLDMOS: 8/28//-17							4				
PNP (SG25H3)	pnp90: 90/120//-2.5						20	73				
RF MEMS (SG25H1, H3)	Switch: 30-110 GHz					epten	oet		1)			
RF MEMS (SG13S)	Switch: 40-140 GHz				35	epte						
LBE* (all)					10,3				1)			
SG25_(E)PIC (SG25H1, H3)	Photonic devices (w/ SG25-BEOL)						PIC		→ <u>E</u>	→ <u>E</u> PIC		
TSV (H1, H3)	for grounding											



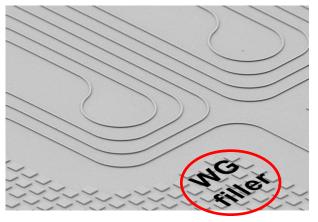
¹⁾ Qualification on customer request

Choice of EPIC technology: Photonic components

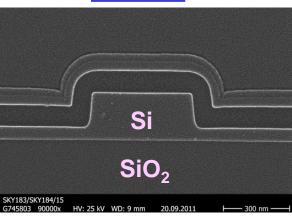
Photonic Integrated Circuit — How to get EPIC??



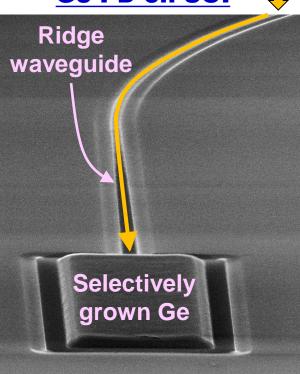
Photonic components (cont'd)

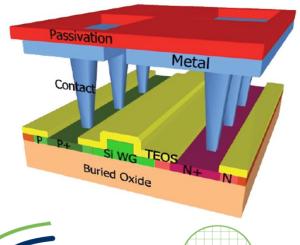

Shallow Deep etched Nano-WG ¹⁾ Rib-WG²⁾ Si **Waveguides** "Buried" SiO₂ Layer Substrate (Si)

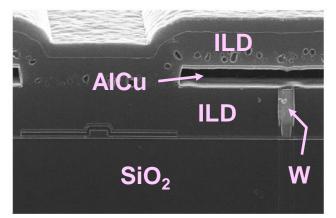
- 1) Nano-WG:
- dense optical routing
- basic structure for most compact integrated optics (splitters, combiners, λ selective filters)
- 2) Shallow Rib-WG:
- low-loss waveguides



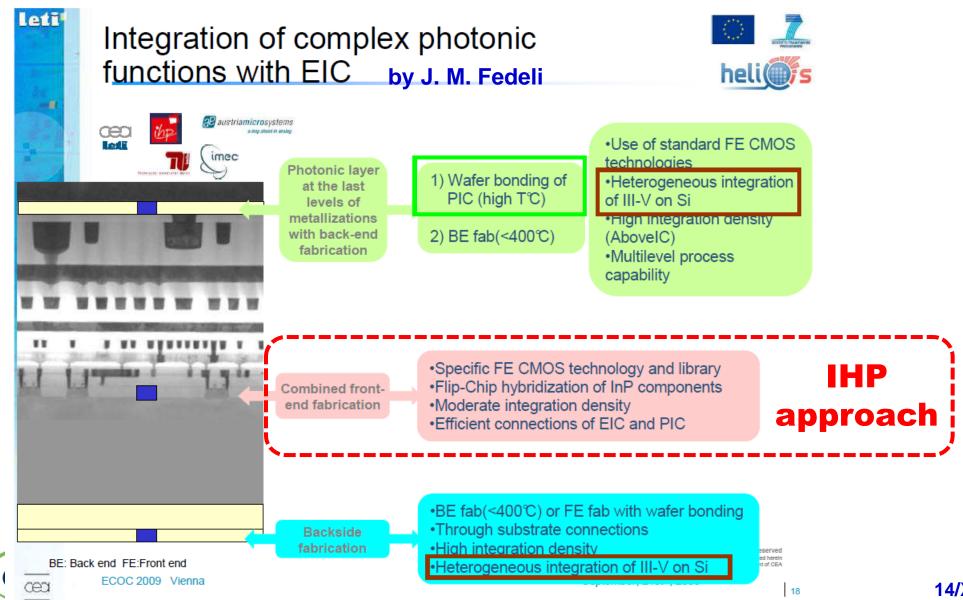
Photonic components (cont'd)


WG pattern


Rib-WG

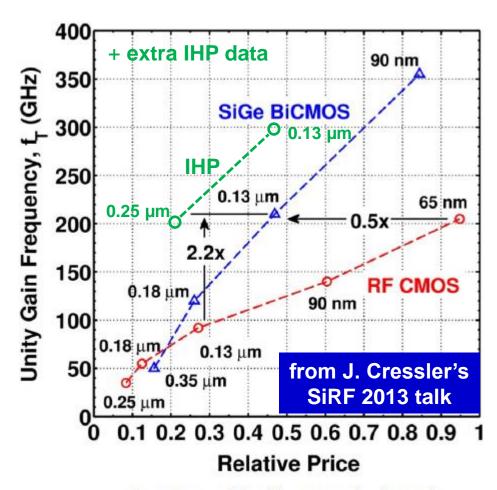


WG-coupled Ge-PD on SOI



MZI depletion modulator

Choice of EPIC technology: FEOL-integration vs. others



Choice of EPIC technology: BiCMOS vs. CMOS baseline

- □ Photonic integration with advanced (≤ 45 nm) CMOS is highly desirable in modern communication systems where DSP is deployed (for example to compensate for signal distortions caused by fiber optical transmission effects)
- However: CMOS scaling lowers operating voltage and current driving capabilities → BiCMOS better suited for developing silicon photonic devices integrated with driving or read-out electronics plus a built-in electronic interface matching advanced CMOS → RF2THZ demo
- □ Present networks operate with per-channel data rates between 10Gbit/sec - 100Gbit/sec, necessitating high speed broadband drive and receive electronics → Can be got much cheaper in BiCMOS: same speed @ relaxed litho node → lower mask & development cost

BiCMOS vs. CMOS baseline (cont'd)

Courtesy of D. Harame, A. Joseph

SiGe BiCMOS has a performance advantage of 2-3 generations over CMOS

- Saving lots of € or \$ for same performance!! or
- Much higher performance
 (> 2x) @ same price

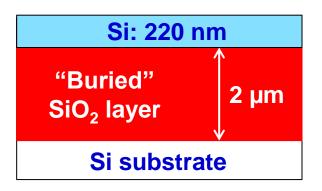
For example: need 65/45 nm CMOS to equal 130 nm SiGe BiCMOS!!

Photonic BiCMOS: Components

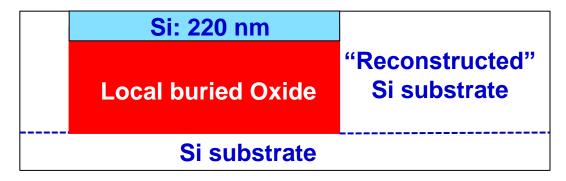
- "Normal" BiCMOS devices:
 - SiGe HBTs
 - MOS transistors
 - Resistors, etc.

"Unchanged" (or better) parameters & yield, compared to the parent BiCMOS process!!

■ New, photonic components (examples):


- Several sorts waveguides, coupling structures
- ➤ Modulator (MZI type) → "beyond RF2THz requirements"
- **➢** Ge-PD, coupled to waveguide

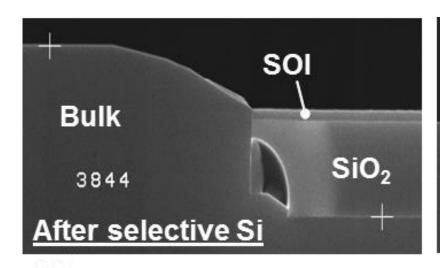
Substrate issue: <u>SOI</u> (Photonics) vs. <u>Bulk</u> (BiCMOS)

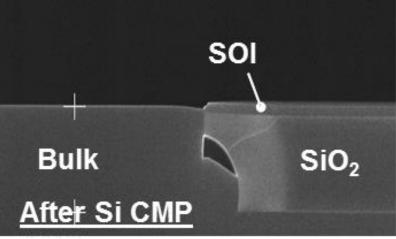

Photonic components:

Need SOI substrate for low loss, but "optimum for photonic" dimensions are by far not optimal or even unfit for CMOS and, fortiori, BiCMOS!!

- **CMOS:** both Si (220 nm) and SiO₂ layers (2 μm) much too thick
- ► HBT: Si layer much too thin for a low-R_C HBT collector fabrication; bad HBT head dissipation because of higher R_{TH} of SiO₂, comp. to Si

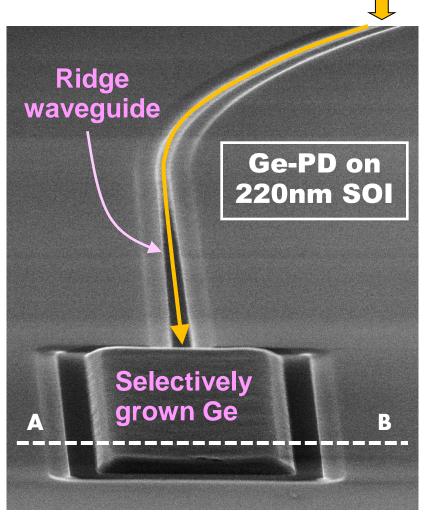
Solution: "Local-SOI"

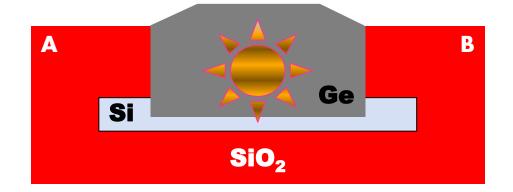



Local-SOI fabrication

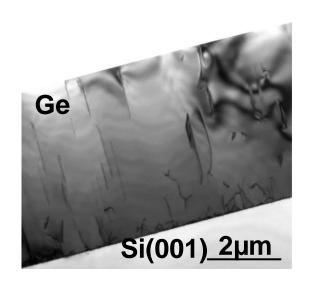
- ☐ Locally removing SOI structure by RIE/wet etch sequence
- □ Selective Si epitaxy

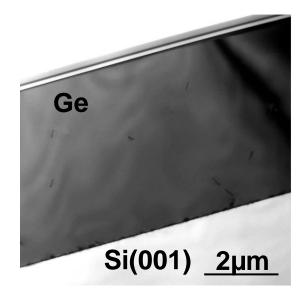
☐ Planarization by Si-CMP


BiCMOS yield??

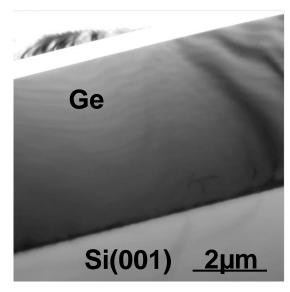


Ge photo detector integration


- WG-coupled photo detectors
- selective Ge epitaxy in a window within an isolator layer stack (mainly SiO₂), protecting the BiCMOS devices during detector fabrication
- Ge epitaxy directly on a silicon waveguide (w/ or w/o recess)



Ge on Si hetero-epitaxy


Need some thermal budget for acceptable layer quality!!

As grown

Post annealing

Cyclic annealing

Integration problems: Ge-PD thermal budget

Problem: Acceptable Ge layer defect densities, i.e. PD-I_{dark}, need a certain thermal budget which is <u>applied after BiCMOS S/D anneal</u>

10

10⁹

10⁸

10⁷

10⁶

10⁵ L

Strong impact on BiCMOS device parameters

As deposited

Postannealed

 $(T_{Ge, melting} = 938^{\circ}C < T_{S/D anneal})$

@ 800 °C, some minutes in total (incl. epi pre-bake)

Threading dislocation density (TDD) vs. thickness for Ge layers epitaxially grown on Si under different anneal conditions

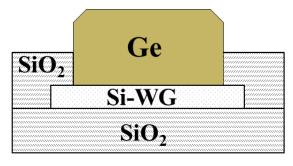
Y. Yamamoto et al; SSE, 60, 1, 2011, pp. 2 - 6)

Before or after CoSi ??

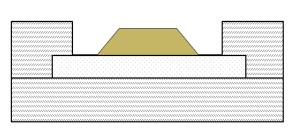
<u>after</u>

saving a mask

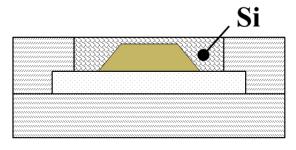
before!!

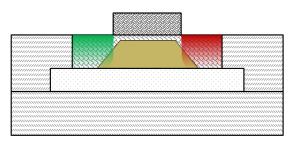

Ge Thickness (µm)

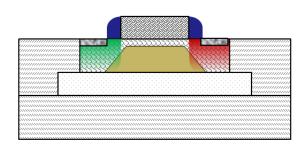
Cyclic

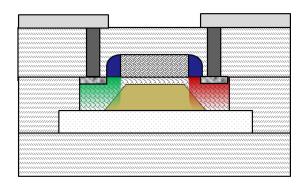

annealed

Electrical data → no choice!!

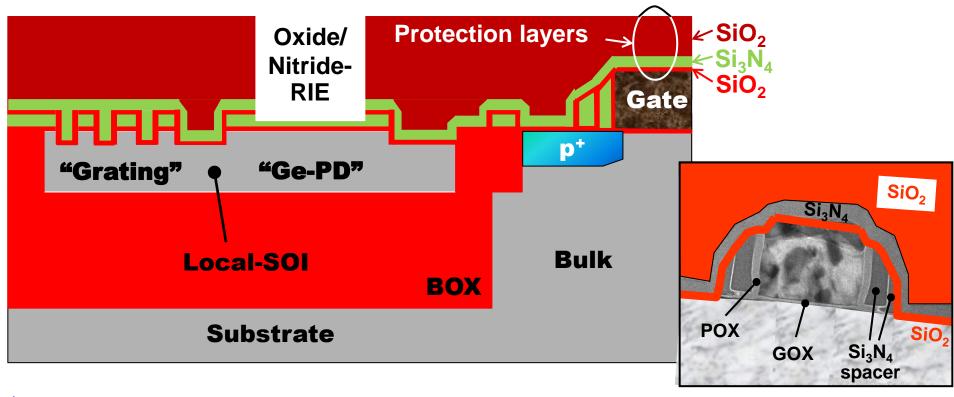

Ge photo-detector: PIN diode fabrication


Selective Ge-epi

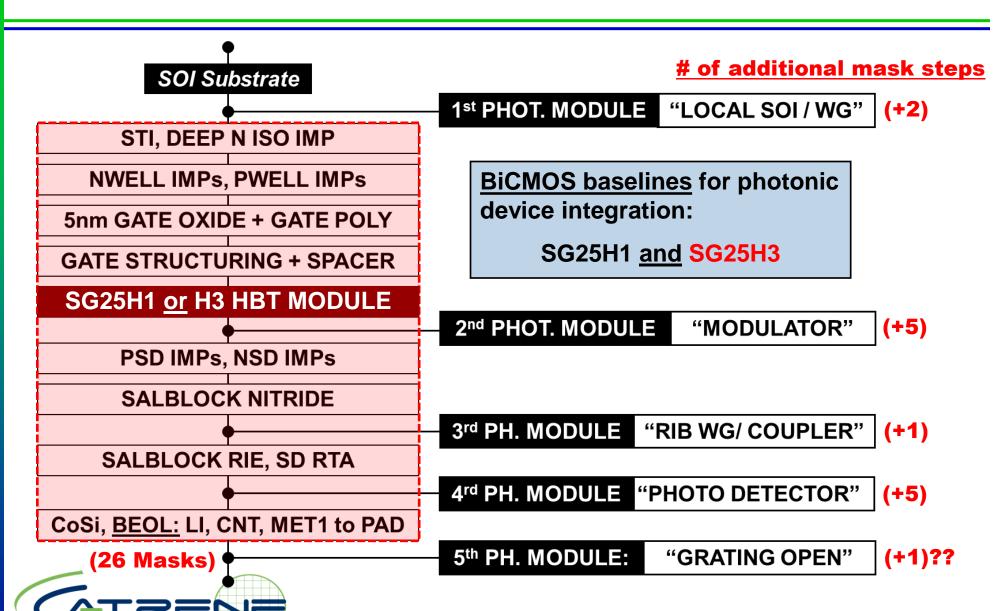

In-situ back etch

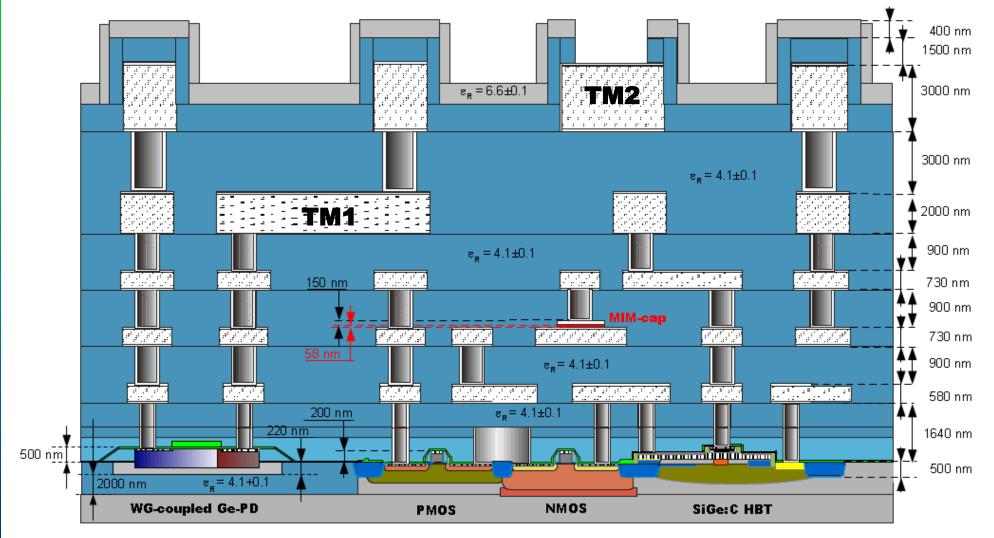

Si-cap deposition & planarization

Si₃N₄ pedestal & implants

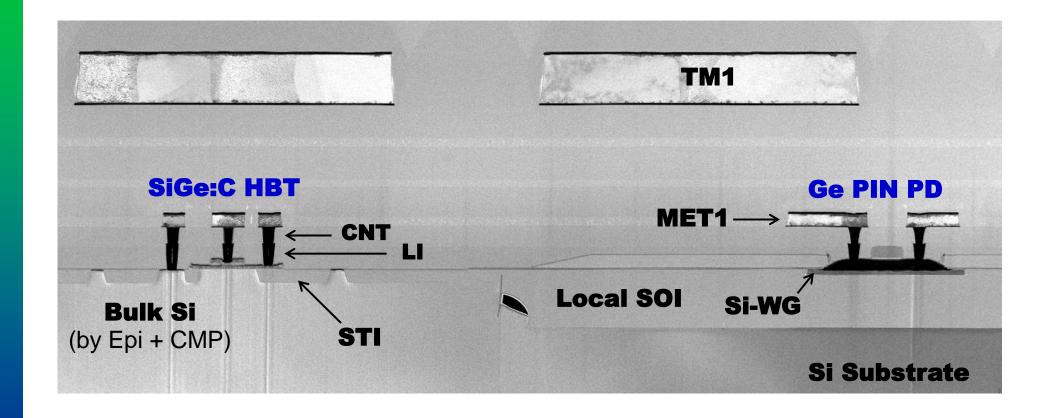

Self aligned Co silicidation

Contacts and metallization

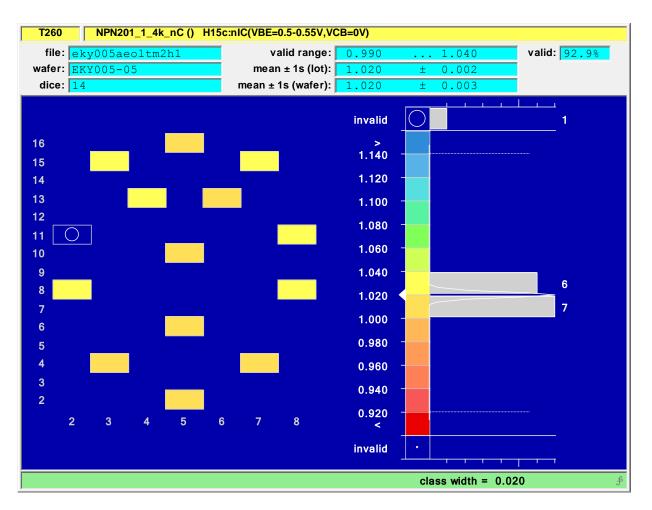

Ge photo-detector: Protection layers


- Additional thermal budget -> BiCMOS parameter compatibility?
- → Have to be removed before CoSi formation → BiCMOS yield problems?
- ➤ Covering couplers → changed behavior?

Photonic BiCMOS: Process overview



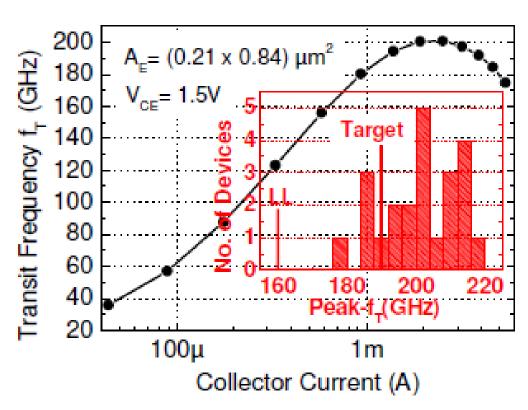
Photonic BiCMOS: Schematic process X-section



Photonic BiCMOS: Real process X-section

Photonic BiCMOS: BiCMOS yield behavior

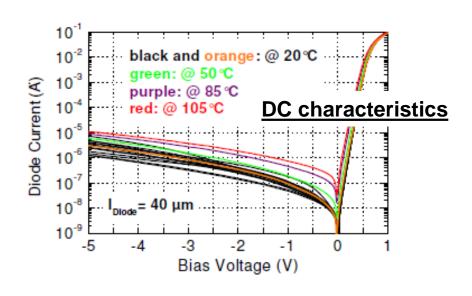
- I_C ideality factor (nC) wafer map for 4k HBT arrays (@ ~ 0.5 V V_{BE})
- nC < 1.05 indicates a pipe-free array, i.e. defect free HBT epi on local-bulk regions formed between local-SOI regions by selective Si-epi + Si-CMP

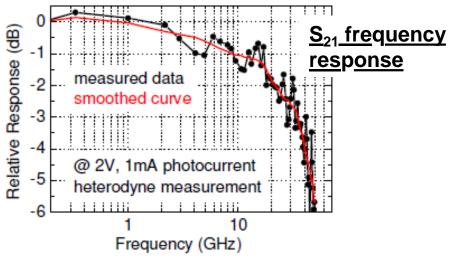


Local-SOI is not a "Bipolar-yield-limiter" (also confirmed for CMOS-yield-monitors)

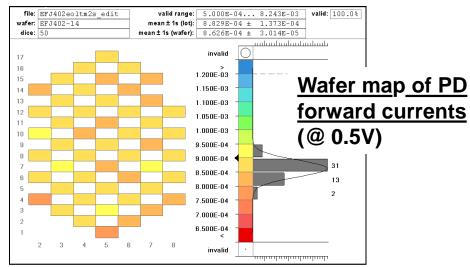
Photonic BiCMOS: <u>BiCMOS</u> parameter behavior

 f_T vs. I_C for SiGe:C HBTs fabricated in the photonic BiCMOS process + wafer histogram of peak- f_T vs. the baseline <u>SG25H1</u> BiCMOS process limits

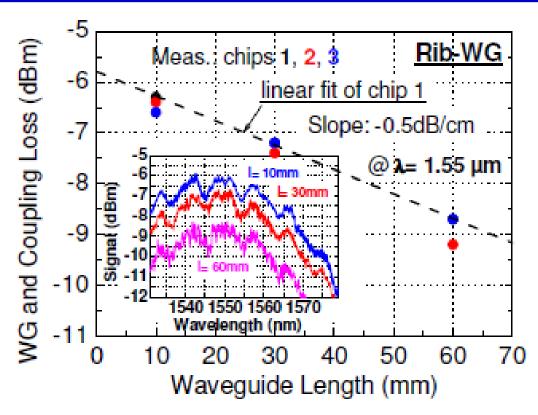



Despite the additional thermal budget of Ge-PD fabrication:

- > HBTs
- > NMOS
- ➢ Poly-Si-Resistors meet the parent BiCMOS process specs
- Not yet in the specs is <u>PMOS</u>



Photonic BiCMOS: Photonic performance (Ge-PD)



- Nice dark current behavior
- 30(+) GHz (-3dB) bandwidth with > 0.6A/W responsivity
 0 λ= 1.55μm
- Good Ge-PD manufacturability

Photonic BiCMOS: WG and coupler performance

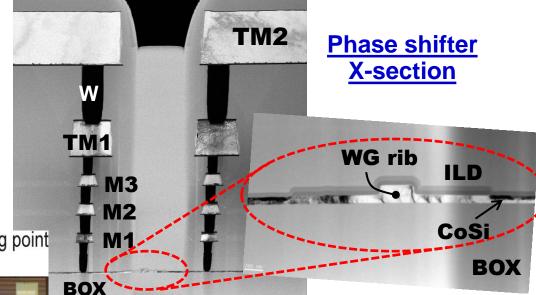
- Total loss vs. WG length of grating couplers w/ shallow-etched WG
- Coupling behavior was measured with BiCMOS protection and ILD layers over the coupler
- Note that we obtain the loss of coupling twice: in and out of the WG
- The inset shows the signal vs. wavelength curves

State-of-the-art PIC performance also in photonic BiCMOS:

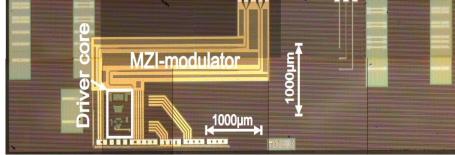
- > 3dB coupling loss (reduction to 1.5dB w/ advanced version -> + 1 mask)
- < 0.7 dB/cm linear loss for Rib-WG (2.4 dB/cm for Nano-WG)</p>


Photonic BiCMOS: What next?

- ☐ Bring PMOS in the specs:
 - Key is a Ge epitaxy with much lower thermal budget than applied so far (promising layer defectivity results already exist; maybe to compromise w/ dark current behavior)
 - "Colder" BiCMOS protection layers for Ge-PD-fabrication??
- Improve photo-detector bandwidth (for applications beyond the RF2THZ demo):
 - ➤ Reduce thermal budget of detector post-processing (by the BiCMOS CoSi module; ILD reflow), but without negative impact on BiCMOS device yield and parameters

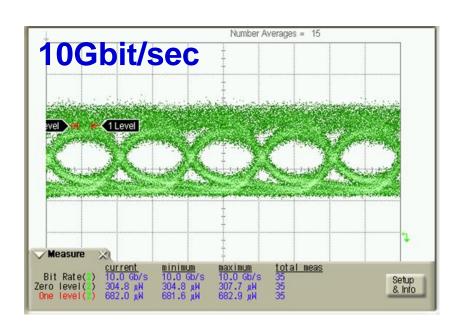


First EPIC demonstrators in "Photonic BiCMOS"


Photonic BiCMOS (SG25H3): Driver + Mach-Zehnder modulator

external 50Ω termination

DC operating point tuning



10Gb/s data input and power supply pads

L. Zimmermann et al.: "Monolithically Integrated 10Gbit/sec Silicon Modulator with Driver in 0.25µm SiGe:C BiCMOS"; 39th European Conference on Optical Communication (ECOC), London, 2013

First EPIC demonstrators in "Photonic BiCMOS" (cont'd)

Dominant loss:

RF phase shifter 7.5dB DC phase shifter 4.0dB

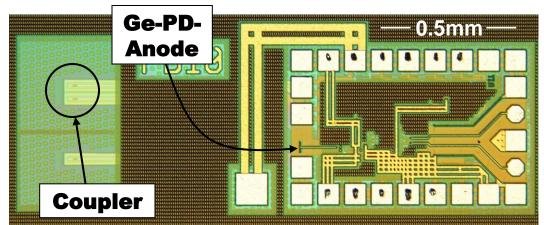
Co-work of Vienna Uni (EMCE), Uni Southampton (Optoel. Res. Centre), PHOTLINE Technologies, TU Berlin (Joint Lab Silicon Photonics), and IHP in the HELIOS project:

Driving test conditions:

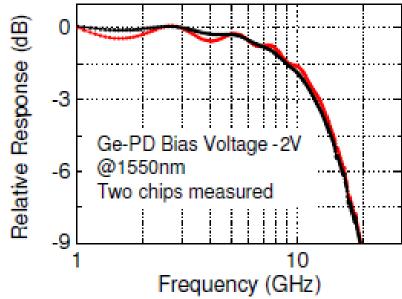
240mV PRBS (digital) 1540nm

TF

8.5dB extinction ratio


Total on chip loss: 13dB

- Photonic BiCMOS 1st driver + MZM
- Target speed demonstrated
- Much too high insertion loss due to doping issues → expect improvements with next design + process)
- Higher speed by design
- Low loss due to process tuning


First EPIC demonstrators in "Photonic BiCMOS" (cont'd)

Photonic BiCMOS (SG25H1): Receiver (Ge-PD + TIA)

Measured receiver characteristics demonstrate successful implementation of our photonics integration approach

SG25H1-TIA designed for 20Gbps data rate

Summary and conclusions

The development status of a new "Photonic BiCMOS" process in the RF2THZSiSoC project was presented and discussed State-of-the-art photonic devices, including a high-speed Ge-PD, were integrated in a high-performance SiGe BiCMOS process for the first time First fabricated demonstrators but also the reached performance of most photonic and BiCMOS devices demonstrate the successful implementation of our photonics integration approach A weak point in the current status of process development, unsufficient PMOS compatibility with Ge-PD integration, must be "repaired" next

Acknowledgement

This research work has been performed in the RF2THZsSiSoC project of the EUREKA program CATRENE in which the partners (here IHP & TUB) are partially funded by

German Ministry of Education and Research

- The author also wishes to acknowledge
 - many colleagues who strongly contributed to this work, including:
 - S. Lischke, L. Zimmermann, Y. Yamamoto, B. Heinemann, G. Winzer, M. Kroh, D. Micusik, H.H. Richter, and B. Tillack from **IHP**
 - K. Petermann and B. Wohlfeil from TU Berlin
 - A. Beling and Q. Zhou from University of Virginia
 - the IHP fab team for excellent support

