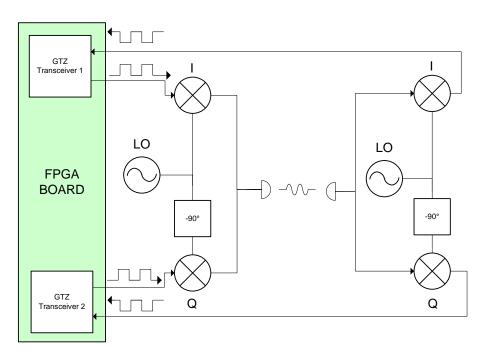

7 dot THz **Seven**

Toward 100-Gbit/s 240-GHz short-range communication using SiGe-transceivers and an FPGA-based baseband

Author: Janne Leivo **Affiliation:** Trebax AB

THz-Workshop: Millimeter- and Sub-Millimeter-Wave circuit design and characterization 26 September 2014, Venice


TC Clase Clase Constant Decree Constant State Const

56 Gbps Short Range Communication with FPGA and SiGe-transceivers

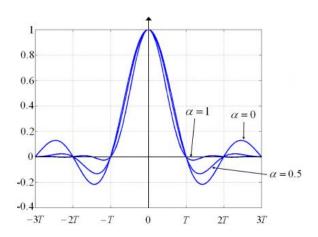
 Xilinx Virtex 7 FPGA has high speed transceivers that are capable of generating baseband signals with bitrates up to 28 Gbps

Use QPSK with IQ-mixer to double the bitrate to 56 Gbps with the same

bandwidth.

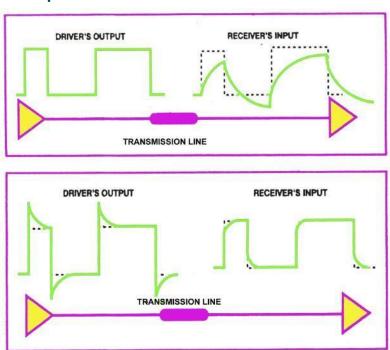
Challenges and Obstacles

- A baseband signal with a bit rate of 28 Gbps requires a 40 GHz+ bandwidth channel, and hence the signal will occupy the entire spectrum from DC to 40 GHz.
 - The insertion loss as a function of frequency will have a very steep roll-off, and the channel basically becomes a low-pass filter resulting in lower SNR and Intersymbolinterference (ISI)
 - Dispersion/group delay variation results in ISI.
 - Timing Jitter of the transmitter clock signal and the recovered clock at the receiver result in timing errors.


Challenges and Obstacles (contd.)

- The RF-channel at 240 GHz can present the same problem with narrow bandwidth and dispersion.
- An issue related to the jitter in baseband channel, will be carrier phase noise and syncronization of the receiver LO with the received signal.
- All these factors from both channels contribute to the signal quality. To succes with the task of successfully transmitting a 56 Gbps signal over a 240 GHz wireless channel with a low Bit-error rate (BER) these will have to be compensated for.

Pulse shaping

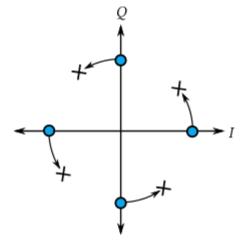

- Pulse shaping of the "square" waves can be performed to lower it's high frequency content and thus make it better suited for the characteristics of the channel.
- Can be done digitally with the FPGA, but also possible to implement analog filters. E.g. raised cosine or gaussian pulse.

Pre-emphasis

 Pre-emphasis of the transmitted signal will be used to to flatten the steep roll-of the channel response.

Equalization

- Equalization to compensate for channels low pass response and dispersion.
- Either measure eye quality and choose filter coefficients for optimal eye opening.
- Or for a fixed setup, measure the channel with a vector network analyzer and choose the taps that best compensate for the channel (dispersion and attenuation).

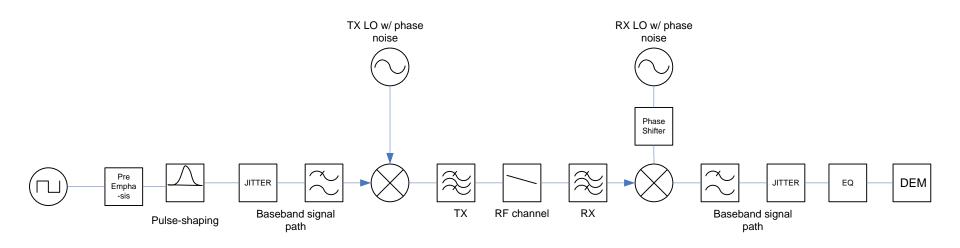

Phase Coherency between TX and RX

 Phase syncronization of the transmitted signal and receiver LO is of vital importance in IQ-modulation. A phase error will rotate the constellation diagram as shown in the figure below.

 Usyally done with a carrier recovery, e.g. a costas loop to extract the phase of the received signal.

We start with using a manual phase shifter on the receiver LO to get

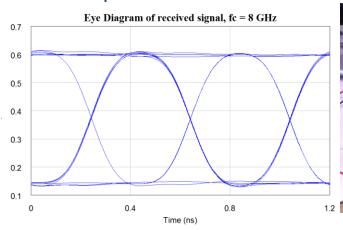
phase coherency.

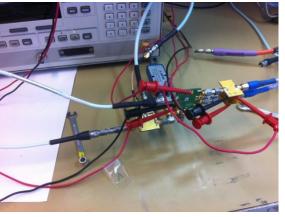


Coding

- 8B/10B coding for DC-balance to avoid charge build-up in the channel
- Forward-correction (FEC) might be considered if needed

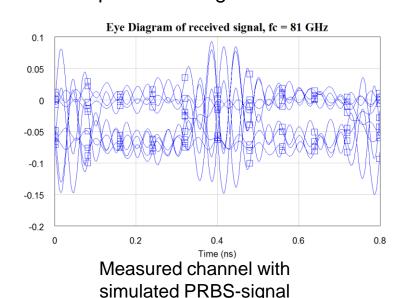
System Block Diagram

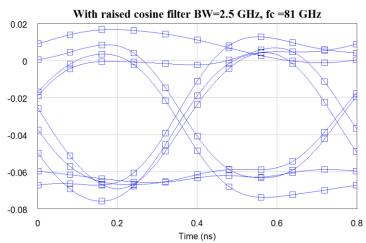

Block diagram from FPGA Transmitter to FPGA Receiver



Performed Test of the Concept at Lower Frequencies

- 5 Gbps QPSK signal over an coaxial cable channel with a Xilinx Spartan 6 FPGA-board and IQ-mixer at Fc = 8 GHz
 - Error-free communication was carried out.
 - Pulse-shaping, pre-emphasis or linear equalization had very little effect on the performance. This is to be expected due to the bandwidth (~ 2 GHz) of the channel which acts as a pulse shaping filter and eliminates the problems with ISI and dispersion.




Measured channel with simulated PRBS-signal

Performed Test of the Concept at Lower Frequencies (contd.)

 Same baseband unit but with an IQ-Mixer at Fc = 81 GHz (E-band) and a waveguide channel.

Error-free cmmunication was not possible. Over the wide bandwidth (10 GHz), the
group delay variation becomes too large, and it was not even possible to compensate it
enough with pre-emphasis or linear equalization. Pulse shaping and/or more advanced
equalization alghoritms are needed.

Measured channel with simulated PRBS-signal and simulated pulse-shaping filter

Acknowledgement

 This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 316755