

EUROPEAN MICROWAVE WEEK 2015

SIX DAYS • THREE CONFERENCES • ONE EXHIBITION

PALAIS DES CONGRÈS, PARIS, FRANCE SEPTEMBER 6 - 11, 2015

Exhibition Opening Hours:

- Tuesday 8th September: 9.30 18.00
- Wednesday 9th September: 9:30 17.30
- Thursday 10th September: 9:30 16.30

Advances in SiGe BiCMOS Technology for mm-Wave Applications in the DOTSEVEN Project

K. Aufinger¹⁾, J. Böck¹⁾, A. Fox²⁾,
B. Heinemann²⁾, H. Rücker²⁾, H. Knapp¹⁾, R. Lachner¹⁾

¹⁾Infineon Technologies AG

²⁾IHP

klaus.aufinger@infineon.com

WS12: EuMIC - SiGe for mm-Wave and THz

Outline

- Introduction
 - Motivation market pull and technology push
- DOTSEVEN results:
 - Exploitation of "evolutionary" DOTFIVE results: Scaled conventional **D**ouble- **P**olysilicon **S**elf-**A**ligned (DPSA) HBT with **S**electively **E**pitaxially **G**rown (SEG) base to BiCMOS – B11HFC
 - Exploitation of "revolutionary" DOTFIVE results: DPSA-SEG HBT with Epitaxial Base Link – Joint IHP/Infineon Flow
 - SiGe HBT Performance Status
- Summary
- Acknowledgement
- References

Motivation – Market Pull

- High-speed SiGe HBT bipolar processes are used today for leading edge RF applications like
 - Automotive radar @ 77 GHz
 - Front-ends for high-speed data links
 - Microwave radio links

– ...

Example: IFX SiGe 3-Ch TX

- Cut-off frequencies (f_T , f_{max}) of process should be 5-10 x larger than operating frequency
 - For radar: f_{op} ~80 GHz → f_{max} > 400 GHz (today: f_{max}/f_{op} ~250/80~3)
- Improvement of today's applications
 - Larger design margins / lower noise / higher gain / better linearity
 - Lower power consumption / enables low cost packaging

Motivation – Technology Push

Results from Dotfive:

- Experimental proven HBT performance [Chevalier et al. 2011]
 - Evolution of industrial transistor concepts (DPSA): $f_{max} \sim 400 \text{ GHz}$
 - New transistor concepts ("revolution"): $f_{max} \sim 500$ GHz and potential
- TCAD simulations [Schroeter et al. 2011]
 - Ultimate doping profile proposal for simulation of f_T and f_{max} roadmap
 - → No physical blocking point for THz SiGe HBT

Example of scaling analysis for f_T , f_{max} vs. a lateral scaling factor s

→ Additionally new application fields, e.g. imaging/radar above 100 GHz, are enabled.

DOTSEVEN in a Nutshell

- Continuation of successful DOTFIVE
- Main objectives:
 - The realization of <u>SiGeC Heterojunction Bipolar Transistors</u> (HBTs) operating at a maximum oscillation frequency up to <u>0.7 THz</u> at room temperature
 - The design and demonstration of integrated <u>mm- and sub-mm-wave circuits</u> using such HBTs for specific applications
 - The evaluation, understanding, and modeling of the relevant <u>physical effects</u> occurring in such high-speed devices and circuits
- Duration: 10/2012 3/2016
- 14 Partners from 6 EU countries: Infineon (IFX), IHP, Dice, Sivers IMA (SIMA),
 Trebax AB (TRE), XMOD, Alma, Universities: Aachen (RWTH), Bordeaux (UB1),
 Delft (TUDelft), Dresden (TUD), Linz (JKU), Napoli (UN), Wuppertal (BUW)
- Website: www.dotseven.eu

DOTSEVEN – Work Packages

Education of talented researchers and engineers Dissemination all partners) Training & WP5

Website, publications Workshops, tutorials,

- WP1 : SiGe HBT technology platform (IHP, IFX)
 - f_{max}/τ_D enhancement: 500GHz/2ps => 600GHz/1.7ps => 700GHz/1.4ps
 - Balanced f_t enhancement (350/350GHz...400/400GHz)
 - CMOS integratability, passives, interconnects
- WP2 : TCAD and physics-based modelling (<u>UN</u>, RWTH, TUD)
 - Advanced device simulation
 - Development of simulation tools (3D, nano-scale, thermal effects)
 - ▶ Reliability modelling (SOA, mixed-mode, high current degradation)
- WP3 : Device characterization & compact modelling (XMOD, TUD, UB1, UN, DICE, IFX)
 - Parameter extraction & methodology
 - Accurate compact models incl. electro-thermal & substrate effects
 - Predictive & statistical modelling
- WP4 : Applications & demonstrators (<u>BUW</u>, TUD, IFX, UB1, XMOD, JKU, SIMA, TRE, DICE, TUDelft)
 - ▶ Benchmark MMICs (PA, LNA, Mux, Demux, VCO, Mixer, Multiplier)
 - Demo: Radar @ 240GHz; 100Gb/s comm.; THz imaging > 300GHz

: Project coordination & management WP6

Overall control of deliverables, milestones, schedule

WP1, SiGe Technology Platform Task Overview

- WP1: Two technology partners/providers: Innovations for High Performance Microelectronics (IHP), Leibniz Institute Infineon
- WP1 Task 1: Advanced Device Architectures (IHP, Infineon)
 - → Stage 1: $f_{max} = 600 GHz / \tau_D = 1.7 ps$
 - \rightarrow Stage 2: $f_{max} = 700GHz / \tau_D = 1.4ps$
- WP1 Task 2: f_T Enhancement (IHP)
- WP1 Task 3: CMOS Compatibility (Infineon)
- WP1 Task 4: Circuit Runs (IHP, Infineon)

In this talk focus on task 3 and task 1

Standard DPSA-SEG Approach

- E/B configuration: Double Polysilicon Self-Aligned with Selectively Epitaxially Grown base (DPSA-SEG)
- Transistor isolation: Deep trench (DT) and shallow trench isolation (STI)

Fabrication Process of DPSA-SEG HBT - I

- Deposition of pedestal oxide/p⁺poly/oxide/nitride stack on transistor
 isolation
- Patterning of emitter window
- Formation of nitride spacers
- Self-aligned collector implantation (SIC)

 Wet etch of pedestal oxide → creates selfaligned adjusted p⁺-poly overhangs

Fabrication Process of DPSA-SEG HBT - II

- Selective epitaxial growth of SiGe base
 - Growth only occurs on Si or poly-Si regions not covered by oxide or nitride
 - During SEG the base link is formed which connects the SiGe base with the p⁺-poly base electrodes

- Nitride layer removal
- Formation of emitter/base spacer
- Emitter deposition
- Emitter patterning
- Silicidation

BiCMOS – B11HFC

- DOTFIVE: pure bipolar technology developed
- Future product generations require more digital functionality
- DOTSEVEN (one task):
 - Integration of the conventional (DPSA-) SiGe HBT developed in DOTFIVE into a 130nm CMOS platform at Infineon

BiCMOS Integration Topics

- HBT is integrated into an established CMOS technology
 - → CMOS devices should not be changed (reuse CMOS IP, ROM, SRAM, ...)
- MOS thermal steps (LDD-& SD-anneals, poly oxidation) deteriorate HBT performance
- Specifically for integration of DOTFIVE HBT into Infineon's 130nm CMOS technology:
 - Substrate orient. for best HBT performance & yield different from standard CMOS
 - → Adjust CMOS: Re-center MOS parameters by modification of implant and anneal steps
 - Different optimal thermal budgets for HBT and CMOS fabrication, find compromise:
 - → Reduce S/D & LDD anneals so that MOS parameters can still be re-centered
 - → Adjust base- and emitter-modules of the HBT to the reduced S/D anneal (which is still higher than in the DOTFIVE HBT process), e.g. reduce emitter doping
 - Structural problems during process integration
 - E. g. removal of layers of bipolar fabrication from MOS gates → introduction of a nitride protection layer that acts as etch-stop-layer during layer removal
 - **–** ...

Simplified Process Flow and **Device List**

Metal 1-4 mmW Metal 5-6 MIM-Capacitor TaN resistor Al Pad High speed NPN Medium speed NPN

- High voltage NPN
- 2.2nm NMOS & PMOS
- 5.2nm NMOS & PMOS
- Bipolar varactor
- TaN resistor
- ppoly resistor
- MIM capacitor
- 2 thick upper metal layers

SiGe for mm-Wave and THz

BiCMOS integration – Electrical Results

Gummel characteristics

 f_T , f_{max} vs. collector current characteristics

- 250 GHz f_T , 370 GHz f_{max} , CML gate delay: 2.5 ps
- Similar performance in BiCMOS flow as in pure bipolar (DOTFIVE)

Circuit Example - B11HFC vs. B7HF200

Block Diagram of 3 Channel 77 GHz Transmitter

Comparsion new process with current production process

	B7HF200	B11HFC
Output power @ 25°C	12.5 dBm	14.9 dBm
Output power @ 125°C	10.5 dBm	14.3 dBm
Phase noise @ 1 MHz offset	-96.5 dBc/Hz	-99 dBc/Hz
Power consumption	1.82 W	0.94 W

- Higher output power
- Lower temperature dependence
- Better phase noise
- Half of the power consumption

Base Link Region

 Links active NPN base and p⁺-polysilicon base electrodes

Formed during selective epitaxial growth

 Found as a major limitation for NPN performance in DOTFIVE (high R_B)

$$f_{\text{max}} \approx \sqrt{\frac{f_T}{8\pi \cdot R_B \cdot C_{BC}}}$$

Schematic cross section of EB region and electrical parasitic elements

DPSA-SEG HBT with Epitaxial Base Link (EBL)

Main performance limitation of standard DPSA-SEG: Base link region and related parameter trade-offs

→ Adapt IHP's HBT with epitaxially grown base link [Fox et al. 2011] to Infineon's 130nm BiCMOS platform: Joint Infineon/IHP mask set and process flow with EBL module established

[Fox et al. 2015]

- Sacrificial nitride as a placeholder for external base during SiGe HBT fabrication
- SEG growth of base link after SiGe base and after emitter formation

Comparison DPSA-SEG with and without EBL

Standard DPSA-SEG HBT

- Base link is formed during SEG simultaneously with active base
- Low doping in link region
- Link anneal needed (broadens base profile, $f_{\tau} \psi$)

DPSA-SEG HBT with epitaxial base link (EBL)

[Fox et al. 2011]

- In-situ doped lateral base link growth after SiGe Epi & emitter formation
- SiGe base & base link formation decoupled
- No separate link anneal

DPSA-SEG with EBL – Experimental Results for Joint EBL Flow

[Fox et al. 2015]

Comparison of RF characteristics with and without EBL

500

f_T, f_{max} vs. measurement frequency and

comparison with IHP reference

- $f_{max} = 500 \text{ GHz}, f_{T} = 300 \text{ GHz}$
- RF performance of original IHP process [Fox et al. 2011] reproduced

DPSA-SEG with EBL – Experimental Results for Joint EBL Flow

Parameter	Unit	Infineon/IHP joint flow		IHP ref.*)	Infineon ref. **)
Process		DPSA-SEG with EBL		DPSA-SEG without EBL	
Layout		BEBC	BEC	BEC	BEC
$W_E \times L_E$	μm²	0.13×2.7		0.155×1.0	0.13×2.69
f _T	GHz	300	305	320	240
f _{max}	GHz	500	465	445	380
j _c (peak f _T)	mA/μm²	17		16	10
BV _{CE0}	V	1.5		1.75	1.5
BV _{CB0}	V	4.8		4.1	5.5
BV _{EB0}	V	1.5		1.35	2.3
$(R_B + R_E) \times L_E$	$Ω \times μm$	46	51	52	86
C _{CB} /L _E	fF/μm	1.45	1.4	2.2	1.3
C _{BE} /L _E	fF/μm	2.1	1.9	2.4	2.1
R _{SBi}	ΚΩ	3.0		2.6	2.6

TEM image of the HBT [Fox et al. 2015]

- R_B reduced by 40 % for EBL module
- f_{max} improvement vs. IHP reference due to reduced C_{CB}

Measured transistor parameters with and without EBL [Fox et al. 2015] (*) [Fox et al. 2011], **) [Chevalier et al. 2011]).

Benchmark Circuit Results

- Record gate delay performance (without inductive peaking)
- Record static frequency divider operation: 161 GHz

Wafer map of CML gate delay [Lachner 2014]

Evolution of maximum static divider operating frequency with decreasing gate delay τ_{D}

SiGe HBT performance improvements

For further optimization IHP also uses their HBT with Non-Selective Epitaxial Growth (N-SEG) of the base and Elevated Extrinsic Base (EEB) [Heinemann et al. 2010]

 f_{\top}

- Other method to achieve low base link resistance
- Similar RF performance as EBL
- N-SEG control is simpler than SEG
- → easier realization of aggressively scaled profiles

Schematic cross section [Heinemann et al. 2010]

Lateral scaling & further optimized base profile

 f_T , f_{max} vs. extrapolation frequency for an N-SEG EEB example

→ f_{max} close to 600 GHz demonstrated

Summary

- Laterally and vertically scaled conventional DPSA-SEG HBT from DOTFIVE has been integrated into 130nm BiCMOS with only marginal influence on high speed performance τ_D : 2.5ps, f_{max} : 370GHz
 - → Design platform for next generation SiGe MMICs, e.g. for automotive radar
- This conventional architecture is limited by the base link region (base resistance)
- Novel device architectures overcome this limitation, offer low base link resistance and provide key performance metrics like $\tau_D \sim 1.7 ps$ or $f_{max} \sim 600 \ GHz$
- The achieved results are a base for further lateral and vertical scaling

Acknowledgement

• Dotseven has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement N°316755, which is gratefully acknowledged.

 Many thanks to our DOTSEVEN partners for the extremely fruitful cooperations, and to the numerous colleagues at Infineon and IHP who have achieved these technology results.

[Chevalier et al. 2011]

References

	"Towards THz SiGe HBTs," Proc. of the IEEE BCTM, 2011, pp. 57-65, DOI: 10.1109/BCTM.2011.6082749.
[Fox et al. 2011]	A. Fox, B. Heinemann, R. Barth, S. Marschmeyer, C. Wipf, Y. Yamamoto, "SiGe:C HBT architecture with epitaxial
	external base", Proc. of the IEEE BCTM, 2011, pp. 70-73, DOI: 10.1109/BCTM.2011.6082751
[Foy ot al 2015]	A Foy B Heinamann H Buecker B Barth C Fischer S Marschmayer C Winf K Aufinger I Boock S Beguth

[Fox et al. 2015] A. Fox, B. Heinemann, H. Ruecker, R. Barth, G. Fischer, S. Marschmeyer, C. Wipt, K. Aufinger, J. Boeck, S. Boguth, H. Knapp, R. Lachner, W. Liebl, D. Manger, T. F. Meister, A. Pribil, J. Wursthorn, "Advanced Heterojunction Bipolar Transistor for Half-THz SiGe BiCMOS Technology", IEEE Electron Device Letters, 2015,

DOI: 10.1109/LED.2015.2432130

[Heinemann et al. 2010] B. Heinemann, R. Barth, D. Bolze, J. Drews, G. G. Fischer, A. Fox, O. Fursenko, T. Grabolla, U. Haak, D. Knoll, R. Kurps, M. Lisker, S. Marschmeyer, H. Rücker, D. Schmidt, J. Schmidt, M. A. Schubert, B. Tillack, C. Wipf, D. Wolansky, Y. Yamamoto, "SiGe HBT technology with f_T/f_{max} of 300GHz/500GHz and 2.0 ps CML gate delay," IEEE IEDM Tech. Dig., 2010, pp. 688-691, DOI: 10.1109/IEDM.2010.5703452.

[Lachner 2014] R. Lachner, "Towards 0.7 terahertz Silicon Germanium heterojunction bipolar technology – The DOTSEVEN project," ECS Trans., vol. 64, issue 6, pp. 21-37, Oct. 2014, DOI: 10.1149/06406.0021ecst

[Schroeter et al. 2011] M. Schroeter, G. Wedel, B. Heinemann, C. Jungemann, J. Krause, P. Chevalier, and A. Chantre, "Physical and Electrical Performance Limits of High-Speed SiGeC HBTs—Part I: Vertical Scaling", IEEE TED, 2011,

pp. 3687-3696

M. Schroeter, J. Krause, N. Rinaldi, G. Wedel, B. Heinemann, P. Chevalier, and A. Chantre, "Physical and Electrical Performance Limits of High-Speed SiGeC HBTs—Part II: Lateral Scaling", IEEE TED, 2011, pp. 3697-3706

P. Chevalier, T. F. Meister, B. Heinemann, S. Van Huylenbroeck, W. Liebl, A. Fox, A. Sibaja-Hernandez, A. Chantre,