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FREEDOM THROUGH MICROWAVES

Introduction
— Motivation — market pull and technology push
 DOTSEVEN results:

— Exploitation of ,,evolutionary” DOTFIVE results: Scaled conventional Double-
Polysilicon Self-Aligned (DPSA) HBT with Selectively Epitaxially Grown (SEG) base to
BiCMOS — B11HFC

— Exploitation of ,revolutionary” DOTFIVE results: DPSA-SEG HBT with Epitaxial Base
Link — Joint IHP/Infineon Flow

— SiGe HBT Performance Status
*  Summary
 Acknowledgement
* References
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Motivation — Market Pull
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* High-speed SiGe HBT bipolar processes are used today for leading
edge RF applications like
— Automotive radar @ 77 GHz
— Front-ends for high-speed data links

Example:
IFX SiGe 3-Ch TX

— Microwave radio links

* Cut-off frequencies (f, f. ) of process should be 5-10 x larger
than operating frequency
— For radar: f,,~80 GHz = f > 400 GHz (today: f_/f,,~250/80~3)
* Improvement of today’s applications
— Larger design margins / lower noise / higher gain / better linearity
— Lower power consumption / enables low cost packaging
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Motivation — Technology Push
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Results from Dotfive:

 Experimental proven HBT performance [Chevalier et al. 2011]
— Evolution of industrial transistor concepts (DPSA): f__ ~ 400 GHz

— New transistor concepts (“revolution”): f__, ~ 500 GHz and potential
 TCAD simulations [Schroeter et al. 2011]

4000

— Ultimate doping profile °
proposal for simulation of —~ — =00y
N 3000 | g =020
frand f__ roadmap o b =050
: : : . 2000
=>» No physical blocking point &
for THz SiGe HBT z
2 1000

Example of scaling analysis for
fr fmax VS. @ lateral scaling factors s

40 60 80 100

s (%)

=» Additionally new application fields, e.g. imaging/radar above 100 GHz, are
enabled.
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DOTSEVEN in a Nutshell
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e Continuation of successful DOTFIVE

* Main objectives:

— The realization of SiGeC Heterojunction Bipolar Transistors (HBTs) operating at a
maximum oscillation frequency up to 0.7 THz at room temperature

— The design and demonstration of integrated mm- and sub-mm-wave circuits using such
HBTs for specific applications

— The evaluation, understanding, and modeling of the relevant physical effects occurring
in such high-speed devices and circuits

e Duration: 10/2012 - 3/2016

e 14 Partners from 6 EU countries: Infineon (IFX), IHP, Dice, Sivers IMA (SIMA),
Trebax AB (TRE), XMOD, Alma, Universities: Aachen (RWTH), Bordeaux (UB1),
Delft (TUDelft), Dresden (TUD), Linz (JKU), Napoli (UN), Wuppertal (BUW)

*  Website: www.dotseven.eu
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DOTSEVEN - Work Packages

B WPS5 : Training & Dissemination

WP1 : SiGe HBT technology platform
(IHP, IFX)

» f../Tp €enhancement: 500GHz/2ps => 600GHz/1.7ps => 700GHz/1.4ps
» Balanced f, enhancement (350/350GHz...400/400GHz)
» CMOS integratability, passives, interconnects

WP2 : TCAD and physics-based modelling
(UN, RWTH, TUD)

» Advanced device simulation
» Development of simulation tools (3D, nano-scale, thermal effects)
» Reliability modelling (SOA, mixed-mode, high current degradation)

WP3 : Device characterization & compact modelling
(XMOD, TUD, UB1, UN, DICE, IFX)

» Parameter extraction & methodology
» Accurate compact models incl. electro-thermal & substrate effects
» Predictive & statistical modelling
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WP4 : Applications & demonstrators
(BUW, TUD, IFX, UB1, XMOD, JKU, SIMA, TRE, DICE, TUDelft)

» Benchmark MMICs (PA, LNA, Mux, Demux, VCO, Mixer, Multiplier)
» Demo: Radar @ 240GHz; 100Gb/s comm.; THz imaging > 300GHz

. ALMA)

» Overall control of deliverables, milestones, schedule

» Organization of meetings, reporting

» Financial distribution

IFX

(

B WP6 : Project coordination & management
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WP1, SiGe Technology Platform
EuMw 2015 Task Overview

 WP1: Two technology partners/providers:
Innovations for High Performance Microelectronics (IHP), Leibniz Institute
Infineon

« WHP1 - Task 1: Advanced Device Architectures (IHP, Infineon)
=>»Stage 1: f, ., = 600GHz / 15 =1.7ps
=»Stage 2: f__ = 700GHz / 1y = 1.4ps

* WHP1 - Task 2: f; Enhancement (IHP)
 WP1 - Task 3: CMOS Compatibility (Infineon)
 WHP1 - Task 4: Circuit Runs (IHP, Infineon)

In this talk focus on task 3 and task 1
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s Standard DPSA-SEG Approach

FREEDOM THROUGH MICROWAVES

Base Emitter Collector
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HBT Cross section

e E/B configuration: Double Polysilicon Self-Aligned with Selectively Epitaxially Grown base
(DPSA-SEG)
e Transistor isolation: Deep trench (DT) and shallow trench isolation (STI)
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Fabrication Process of DPSA-SEG HBT - |
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oxide nitride
AN e Deposition of pedestal oxide/p*-
poly/oxide/nitride stack on transistor
_ isolation
_ siC e Patterning of emitter window
oxide . _
® Formation of nitride spacers
heavily doped subcollector e Self-aligned collector implantation (SIC)
oxide nitride
7 e \Wet etch of pedestal oxide =2 creates self-

aligned adjusted p*-poly overhangs

SIC

oxide

heavily doped subcollector
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Fabrication Process of DPSA-SEG HBT - Il

® Selective epitaxial growth of SiGe base

EuMW 2015
FREEDOM THROUGH MICROWAVES
nitride  base link SiGe base
N\ \ /
S \ /

® Growth only occurs on Si or poly-Si regions
not covered by oxide or nitride

oxide SIC

® During SEG the base link is formed which
connects the SiGe base with the p*-poly base
electrodes

heavily doped subcollector

Nitride layer removal
Formation of emitter/base spacer
Emitter deposition

Emitter patterning
Silicidation

heavily doped subcollector
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BICMOS - B11HFC
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DOTFIVE: pure bipolar technology developed
Future product generations require more digital functionality

® DOTSEVEN (one task):

® Integration of the conventional (DPSA-) SiGe HBT developed in DOTFIVE into a 130nm

CMOS platform at Infineon

130nm MOSFETs + Scaled SiGe HBTs + mmWave
(C11) (DOTFIVE SiGe HBT) BEOL _

M7 Alu

ZA304156 #19
die 06-03

M6 Cu

M5 Cu

M4 Cu o =
M3 Cu

M2 Cu
M1 Cu

September 6, 2015 SiGe for mm-Wave and THz

3 LM
B7HF200

4 LM
C11N

11



BICMOS Integration Topics
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* HBT is integrated into an established CMOS technology
=>» CMOS devices should not be changed (reuse CMOS IP, ROM, SRAM, ...)

* MOS thermal steps (LDD-& SD-anneals, poly oxidation) deteriorate HBT performance
* Specifically for integration of DOTFIVE HBT into Infineon‘s 130nm CMOQOS technology:
— Substrate orient. for best HBT performance & yield different from standard CMOS
=>» Adjust CMOS: Re-center MOS parameters by modification of implant and anneal steps
— Different optimal thermal budgets for HBT and CMOS fabrication, find compromise:

=>» Reduce S/D & LDD anneals so that MOS parameters can still be re-centered

=>» Adjust base- and emitter-modules of the HBT to the reduced S/D anneal (which is still
higher than in the DOTFIVE HBT process), e.g. reduce emitter doping

— Structural problems during process integration

E. g. removal of layers of bipolar fabrication from MOS gates =» introduction of a nitride
protection layer that acts as etch-stop-layer during layer removal
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Device List

Simplified Process Flow and

September 6, 2015

|
CMOS Protection ]

[

[ Protection ]
Removal

i

Spacer Removal

D —

SiGe for mm-Wave and THz

Main devices:

High speed NPN

Medium speed NPN

High voltage NPN

2.2nm NMOS & PMOS
5.2nm NMOS & PMOS
Bipolar varactor

TaN resistor

ppoly resistor

MIM capacitor

2 thick upper metal layers
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BiCMOS integration - Electrical

il Results
Gummel characteristics f, f . VS. collector current characteristics
400
10" , , , ,
02 | | 350 :
s A;=0.13x2.73 pm? / max
0P ) / \
10° | T 250 —
- o f \
107 T 200 / / TN
£l \\
-~ 10° ! - 150
10° ¢ / \\
100
107 { \\
10"} 50f Ap=0.13x 2.73 um?, BEBC "\
12 ; ‘ ‘ | ‘ ]
%9 02 04 06 08 1 1.2 0 {
Vbe [V] 5 10

* 250 GHzf;, 370 GHz f

max’

collector current [mA]

CML gate delay: 2.5 ps

* Similar performance in BICMOS flow as in pure bipolar (DOTFIVE)
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Circuit Example - B11HFC vs. B7ZHF200
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Block Diagram of 3 Channel
77 GHz Transmitter Comparsion new process with

current production process

[N
L
04

RF2

g, o2 1 Qf : B7HF200 B11HFC
o2 o2 | Output power @ 25°C 12.5dBm | 14.9 dBm
o (< Spier >] g Output power @ 125°C 10.5dBm | 14.3dBm
Temp] TEMP o §E§ Phase noise @ 1 MHz offset | -96.5 dBc/Hz | -99 dBc/Hz
8] BEER | Power consumption 1.82 W 0.94 W
E{@ > o | 5070
) o ®* Higher output power
o] nenae T e * Lower temperature
L i dependence
g % 3 * Better phase noise
B * Half of the power consumption
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Base Link Region

EuMW 2015

FREEDOM THROUGH MICROWAVES

Base link region

® Links active NPN base and
p*-polysilicon base electrodes

® Formed during selective epitaxial
growth

® Found as a major limitation for

NPN performance in DOTFIVE
(high Rg)
heavily doped subcollector
. fr ; i
™\ 8 Rg -Cgc Wan

Schematic cross section of EB region and
electrical parasitic elements
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il DPSA-SEG HBT with
Eumw 2015 Epitaxial Base Link (EBL)

Main performance limitation of standard DPSA-SEG: Base link region
and related parameter trade-offs

=>» Adapt IHP’s HBT with epitaxially grown base link [Fox et al. 2011]
to Infineon’s 130nm BiCMOS platform: Joint Infineon/IHP mask set

and process flow with EBL module established

[FOX et al. 2015] Cover Oxide Oxide Spacer
Upper Oxide Emitter 7
Sacrificial Nitride 33 1

Lower Oxide sIC

§| o SiGeBase é

» Sacrificial nitride as a placeholder for @
external base during SiGe HBT fabrication  Seectve _
* SEG growth of base link after SiGe base growth <~ >

and after emitter formation

\
N\

(b)
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Comparison DPSA-SEG

S with and without EBL
Standard DPSA-SEG HBT DPSA-SEG HBT with epitaxial base link (EBL)
oxide nitride
\ [Fox et al. 2011]
\\\ 4
p*-poly \
T 7] S
oxide SIC oxide ‘ >IC ‘
heavily doped subcollector heavily doped subcollector
* Base link is formed during SEG * In-situ doped lateral base link growth
simultaneously with active base after SiGe Epi & emitter formation
* Low dopingin link region * SiGe base & base link formation
* Link anneal needed (broadens base decoupled

profile, f, W)
* No separate link anneal
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i DPSA-SEG with EBL — Experimental Results
AL for Joint EBL Flow

[Fox et al. 2015]
Comparison of RF characteristics fr, f . VS. measurement frequency and
with and without EBL comparison with IHP reference
500 500 A AWV
AN o
400 EBL, i fmax k’\*’
\
= N 200l e I - - N A OO S S
S. 300 ——————. — —
k. fr
L 200 I _ ]
- Solid: Joint Flow
100 o EBL  Dashed: IHP reference

Vg = 0.5V, T=298K | | |

1 10 0 10 20 30 40 50
collector current density [MA/um?] measurement frequency [GHZ]

®* foax = 500 GHz, f; = 300 GHz
®* RF performance of original IHP process [Fox et al. 2011] reproduced
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DPSA-SEG with EBL — Experimental Results
EuMW 2015 for Joint EBL Flow

FREEDOM THROUGH MICROWAVES
Unit Infineon/IHP | IHP ref.”) Infineon ref. **)
Parameter .
joint flow
Process DPSA-SEG with EBL DPSA-SEG
without EBL
Layout BEBC | BEC BEC BEC
W, x L, um? 0.13x2.7 | 0.155x1.0 0.13%2.69
f, GHz | 300 | 305 320 240
£ GHz | 500 | 465 445 380
jc (peak f;) | mA/um? 17 16 10
BV 0 Vv 1.5 1.75 1.5
BVcao v 4.8 4.1 > TEM image of the HBT [Fox et al. 2015]
BV, v 1.5 1.35 2.3
(Ro*+ Re)xLe| Q>xpum | 46 | 51 >2 86 * Ry reduced by 40 % for EBL module
Cer/L fF 1.45 14 2.2 13 .
co/Le fum « f_..improvement vs. IHP reference due
Cae /L fF/um | 2.1 1.9 2.4 2.1
to reduced Cg4
Reg, KQ 3.0 2.6 2.6

Measured transistor parameters with and without EBL [Fox
et al. 2015] () [Fox et al. 2011], ™) [Chevalier et al. 2011] ).
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Benchmark Circuit Results
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®* Record gate delay performance (without inductive peaking)

®* Record static frequency divider operation: 161 GHz

9 1.971 | 1.933 20
8 1912 | 1.765 | 1.769 | 1.787 ~.._Infineon 1997
@
10~ ~
72- 1782 | 176 | 1.765 | 1.751 | 1.814 g
%)
o
6 1.923 | 1.756 | 1.765 | 1.847 | 1.765 | 1.769 = 6f
© . N
< Infineon 2003 ™2
1882 | 1.747 | 1.8 | 1.824 | 1.769 | 1.756 o 4r
4 1.965 | 1.782 | 1.738 | 1.756 | 1.751 | 1.814 R} Infineon 2010 ™e.
3 1852 | 1.782 | 1.743 | 1.782 | 1.944 2r i .
IHP / Infineon 2015
2 1912 | 1.892 | 1.965
1 T [ S] ]20 40 60 80 100 200
D p Max. operating frequency [GHZz]
1 2 3I—4 A5 & 7 8

Wafer map of CML gate delay Evolution of maximum static divider operating
[Lachner 2014] frequency with decreasing gate delay t,
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SiGe HBT performance improvements
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For further optimization IHP also uses their HBT with Non-Selective Epitaxial Growth
(N-SEG) of the base and Elevated Extrinsic Base (EEB) [Heinemann et al. 2010]
* Other method to achieve low base link resistance

 Similar RF performance as EBL 200
* N-SEG control is simpler than SEG GHz600 An .
=> easier realization of aggressively scaled profiles A NRRAVAVY/
500 ~ f
/,.,-./ max
, 400
Base Emitter fmax
El?ﬁﬁé?f contact contact Collector ,r/ e
base contact 300 f
£ Il T
200 /
100
Heavily-doped collector 0
0 10 20 30 40 50 g 60

extrapolation frequency

: . , fr, f.. VS. extrapolation frequency
* Lateral scaling & further optimized base profile for an N-SEG EEB example

=>f__ close to 600 GHz demonstrated

Schematic cross section [Heinemann et al. 2010]
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Summary
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e Laterally and vertically scaled conventional DPSA-SEG HBT
from DOTFIVE has been integrated into 130nm BiCMOS with
only marginal influence on high speed performance
5 2.5ps, f . 370GHz

= Design platform for next generation SiGe MMICs, e.qg. for
automotive radar

e This conventional architecture is limited by the base link
region (base resistance)

e Novel device architectures overcome this limitation, offer low
base link resistance and provide key performance metrics like
p~ 1.7ps or f ., ~ 600 GHz

e The achieved results are a base for further lateral and vertical
scaling
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[Chevalier et al. 2011]
[Fox et al. 2011]

[Fox et al. 2015]

[Heinemann et al. 2010]

[Lachner 2014]

[Schroeter et al. 2011]
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