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Motivation – Market Pull 

• High-speed SiGe HBT bipolar processes are used today for leading 
edge RF applications like 
– Automotive radar @ 77 GHz 

– Front-ends for high-speed data links 

– Microwave radio links 

– … 

• Cut-off frequencies (fT, fmax) of process should be 5-10 x larger 
than operating frequency 

– For radar: fop~80 GHz  fmax > 400 GHz (today: fmax/fop~250/80~3) 

• Improvement of today’s applications 
– Larger design margins / lower noise / higher gain / better linearity 

– Lower power consumption / enables low cost packaging 

Example: 
IFX SiGe 3-Ch TX 
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Motivation – Technology Push 

Results from Dotfive: 
• Experimental proven HBT performance [Chevalier et al. 2011] 

 Evolution of industrial transistor concepts (DPSA): fmax ~ 400 GHz  
 New transistor concepts (“revolution”): fmax ~ 500 GHz and potential 

• TCAD simulations [Schroeter et al. 2011] 
 Ultimate doping profile 

proposal for simulation of 
fT and fmax roadmap 
 

No physical blocking point 
for THz SiGe HBT 

 

 Additionally new application fields, e.g. imaging/radar above 100 GHz, are 
enabled. 

Example of scaling analysis for 
fT, fmax vs. a lateral scaling factor s 
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DOTSEVEN in a Nutshell 

• Continuation of successful DOTFIVE 

• Main objectives: 

– The realization of SiGeC Heterojunction Bipolar Transistors (HBTs) operating at a 
maximum oscillation frequency up to 0.7 THz at room temperature 

– The design and demonstration of integrated mm- and sub-mm-wave circuits using such 
HBTs for specific applications 

–  The evaluation, understanding, and modeling of the relevant physical effects occurring 
in such high-speed devices and circuits 

• Duration: 10/2012 – 3/2016 

• 14 Partners from 6 EU countries: Infineon (IFX), IHP, Dice, Sivers IMA (SIMA), 

Trebax AB (TRE), XMOD,  Alma, Universities: Aachen (RWTH), Bordeaux (UB1), 

Delft (TUDelft), Dresden (TUD), Linz (JKU), Napoli (UN), Wuppertal (BUW) 

• Website: www.dotseven.eu 



SiGe for mm-Wave and THz 6 September 6, 2015 

DOTSEVEN – Work Packages 

 WP1 : SiGe HBT technology platform    
(IHP, IFX) 
 fmax /tD enhancement: 500GHz/2ps => 600GHz/1.7ps => 700GHz/1.4ps 
 Balanced ft enhancement (350/350GHz…400/400GHz) 
 CMOS integratability, passives, interconnects 

 WP2 : TCAD and physics-based modelling  
(UN, RWTH, TUD) 
 Advanced device simulation   
 Development of simulation tools (3D, nano-scale, thermal effects) 
 Reliability modelling (SOA, mixed-mode, high current degradation) 

  WP3 : Device characterization & compact modelling  
(XMOD, TUD, UB1, UN, DICE, IFX ) 
 Parameter extraction  & methodology 
 Accurate compact models incl. electro-thermal & substrate effects 
 Predictive & statistical modelling 

  WP4 : Applications & demonstrators  
(BUW, TUD, IFX, UB1, XMOD, JKU, SIMA, TRE, DICE, TUDelft) 
 Benchmark MMICs (PA, LNA, Mux, Demux, VCO, Mixer, Multiplier) 
 Demo: Radar @ 240GHz; 100Gb/s comm.; THz imaging > 300GHz 
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WP1, SiGe Technology Platform 
Task Overview 

• WP1: Two technology partners/providers: 
Innovations for High Performance Microelectronics (IHP) , Leibniz Institute 
Infineon 

• WP1 - Task 1: Advanced Device Architectures (IHP, Infineon) 

Stage 1: fmax = 600GHz / tD = 1.7ps 

Stage 2: fmax = 700GHz / tD = 1.4ps 

• WP1 - Task 2: fT Enhancement (IHP) 

• WP1 - Task 3: CMOS Compatibility (Infineon) 

• WP1 - Task 4: Circuit Runs (IHP, Infineon) 
 
  In this talk focus on task 3 and task 1 
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Standard DPSA-SEG Approach 

subcollector 

collector 
sinker 

SIC SiGe base 

n+-poly 
p+-
poly 

deep trench 
isolation 

shallow trench 
isolation (STI) 

W silicide 

Emitter Base Collector 

● E/B configuration: Double Polysilicon Self-Aligned with Selectively Epitaxially Grown base 
(DPSA-SEG) 

● Transistor isolation: Deep trench (DT) and shallow trench isolation (STI)  

HBT Cross section 
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Fabrication Process of DPSA-SEG HBT - I 

● Deposition of pedestal oxide/p+-
poly/oxide/nitride stack on transistor 
isolation 

● Patterning of emitter window 
● Formation of nitride spacers 
● Self-aligned collector implantation (SIC) 

● Wet etch of pedestal oxide  creates self-
aligned adjusted p+-poly overhangs 

nitride oxide 

heavily doped subcollector 

p+-poly 

oxide oxide SIC 

nitride oxide 

heavily doped subcollector 

p+-poly 

oxide oxide SIC 
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● Selective epitaxial growth of SiGe base 
● Growth only occurs on Si or poly-Si  regions 

not covered by oxide or nitride 
● During SEG the base link is formed which 

connects the SiGe base with the p+-poly base 
electrodes 

 

● Nitride layer removal 
● Formation of emitter/base spacer 
● Emitter deposition 
● Emitter patterning 
● Silicidation  

SiGe base 

heavily doped subcollector 

p+-poly 

SIC 
oxide oxide 

base link nitride 

E/B spacer 

heavily doped subcollector 

p+-poly 

SIC 
oxide 

emitter layer 
silicide 

Fabrication Process of DPSA-SEG HBT - II 
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BiCMOS – B11HFC 

130nm  MOSFETs 

(C11) 

Gate 
Poly 

Scaled  SiGe HBTs 

(DOTFIVE SiGe HBT) 

Base Contact  
Poly 

Emitter Poly 

4 LM 
C11N 

3 LM 
B7HF200 

mmWave 
BEOL 

+ + 

• DOTFIVE: pure bipolar technology developed 

• Future product generations require more digital functionality 

• DOTSEVEN (one task): 

• Integration of the conventional (DPSA-) SiGe HBT developed in DOTFIVE into a 130nm 
CMOS platform at Infineon 
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BiCMOS Integration Topics 

• HBT is integrated into an established CMOS technology 
 CMOS devices should not be changed (reuse CMOS IP, ROM, SRAM, …) 

• MOS thermal steps (LDD-& SD-anneals, poly oxidation) deteriorate HBT performance 

• Specifically for integration of DOTFIVE HBT into Infineon‘s 130nm CMOS technology: 

– Substrate orient. for best HBT performance & yield different from standard CMOS 

  Adjust CMOS: Re-center MOS parameters by modification of implant and anneal steps 

– Different optimal thermal budgets for HBT and CMOS fabrication, find compromise: 

Reduce S/D & LDD anneals so that MOS parameters can still be re-centered  

Adjust base- and emitter-modules of the HBT to the reduced S/D anneal (which is still 
higher than in the DOTFIVE HBT process), e.g. reduce emitter doping 

– Structural problems during process integration 

E. g. removal of layers of bipolar fabrication from MOS gates  introduction of a nitride 
protection layer that acts as etch-stop-layer during layer removal 

– … 
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Simplified Process Flow and 
Device List 

Main devices: 
• High speed NPN 
• Medium speed NPN 
• High voltage NPN 
• 2.2nm NMOS & PMOS 
• 5.2nm NMOS & PMOS 
• Bipolar varactor 
• TaN resistor 
• ppoly resistor 
• MIM capacitor 
• 2 thick upper metal layers 

Substrate 

Buried Layers 
Collector Epitaxy 

Deep Trench Isolation 

Collector Sinker 

Shallow Trench 
Isolation 

MOS Wells 

Gate and Sidewall 
oxidation 

SiGe HBT Module 

MOS Implants 

S/D/E Anneal 

Salicide 

Metal 1-4 

mmW Metal 5-6 
MIM-Capacitor 

TaN resistor 

CMOS Protection 

Protection 
Removal 

Spacer Removal 

Al Pad 
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BiCMOS integration – Electrical 
Results 

 

• 250 GHz fT, 370 GHz fmax, CML gate delay: 2.5 ps 

• Similar performance in BiCMOS flow as in pure bipolar (DOTFIVE) 

fT, fmax vs. collector current characteristics Gummel characteristics 

AE = 0.13× 2.73 µm2 
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AE = 0.13× 2.73 µm2, BEBC 

fT 

fmax 



SiGe for mm-Wave and THz 15 September 6, 2015 

Circuit Example - B11HFC vs. B7HF200 

RF1

RF1N

RF3N

RF3

Q2N

Q2

MUXA

MUXB

Q1N

Q1

VCC

VEETemp.
Sensor

Divider 1

TUNE1F

TUNE2C

Power 
Splitter

Serial Conf.
Interface
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SI

CLK

Multiplexer
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77 GHz

TEMP
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bipolar

CMOS

Block Diagram of 3 Channel 

77 GHz Transmitter 

B7HF200 B11HFC 

Output power @ 25°C 12.5 dBm 14.9 dBm 

Output power @ 125°C 10.5 dBm 14.3 dBm 

Phase noise @ 1 MHz offset -96.5 dBc/Hz -99 dBc/Hz 

Power consumption 1.82 W 0.94 W 

• Higher output power 

• Lower temperature 
dependence 

• Better phase noise 

• Half of the power consumption 

Comparsion new process with 
current production process 
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Base Link Region 

RBLink

CBCiCBCLink

oxideCBCOX RBi

CBEOX

CBEi RE

p+-poly

oxide

WEW

WE

WAA

STI

heavily doped subcollector

WEP

WSp

RBSP SiGe base

n+-poly

SIC

● Links active NPN base and 
p+-polysilicon base electrodes 

● Formed during selective epitaxial 
growth 

● Found as a major limitation for 
NPN performance in DOTFIVE 
(high RB) 

Schematic cross section of EB region and 
electrical parasitic elements 

Base link region 

BCB

T

CR

f
f




8
max
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DPSA-SEG HBT with  
Epitaxial Base Link (EBL) 

Main performance limitation of standard DPSA-SEG: Base link region 
and related parameter trade-offs 
 Adapt IHP’s HBT with epitaxially grown base link [Fox et al. 2011] 
to Infineon’s 130nm BiCMOS platform:  Joint Infineon/IHP mask set 
and process flow with EBL module established 
[Fox et al. 2015] 

• Sacrificial nitride as a placeholder for 
external base during SiGe HBT fabrication 

• SEG growth of base link after SiGe base 
and after emitter formation 
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Comparison DPSA-SEG 
with and without EBL 

• In-situ doped lateral base link growth 
after SiGe Epi & emitter formation 

• SiGe base & base link formation 
decoupled 

• No separate link anneal 

Standard DPSA-SEG HBT DPSA-SEG HBT with epitaxial base link (EBL) 

• Base link is formed during SEG 
simultaneously with active base 

• Low doping in link region 

• Link anneal needed (broadens base 
profile, fT ) 

nitride oxide 

heavily doped subcollector 

p+-poly 

oxide oxide SIC 

[Fox et al. 2011] 

heavily doped subcollector 

SIC 
oxide 

emitter 
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• fmax = 500 GHz, fT = 300 GHz 

• RF performance of original IHP process [Fox et al. 2011] reproduced 

DPSA-SEG with EBL – Experimental Results 
for Joint EBL Flow 

[Fox et al. 2015] 
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Comparison of RF characteristics 
with and without EBL 

fT, fmax vs. measurement frequency and 
comparison with IHP reference 

Solid: Joint Flow 
Dashed: IHP reference 

fT 

fmax 
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TEM + Untermenge 
der Parameter 

Parameter 
Unit Infineon/IHP 

joint flow 
IHP ref.*) Infineon ref. **) 

Process 
DPSA-SEG  with EBL DPSA-SEG 

without EBL 

Layout BEBC BEC BEC BEC 

WE  LE µm2 0.132.7 0.1551.0 0.132.69 

fT GHz 300 305 320 240 

fmax GHz 500 465 445 380 

jC (peak fT) mA/µm2 17 16 10 

BVCE0 V 1.5 1.75 1.5 

BVCB0 V 4.8 4.1 5.5 

BVEB0 V 1.5 1.35 2.3 

(RB + RE)  LE W µm 46 51 52 86 

CCB /LE fF/µm 1.45 1.4 2.2 1.3 

CBE /LE fF/µm 2.1 1.9 2.4 2.1 

RSBi KW 3.0 2.6 2.6 

TEM image of the HBT [Fox et al. 2015]  

Measured transistor parameters with and without EBL [Fox 
et al. 2015] (*) [Fox et al. 2011] , **) [Chevalier et al. 2011] ). 

DPSA-SEG with EBL – Experimental Results 
for Joint EBL Flow 

• RB reduced by 40 % for EBL module 

• fmax improvement vs. IHP reference due 
to reduced CCB 
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Benchmark Circuit Results 

Evolution of maximum static divider operating 
frequency with decreasing gate delay tD 

• Record gate delay performance (without inductive peaking) 

• Record static frequency divider operation: 161 GHz 

 

Infineon 1997 

Infineon 2003 

Infineon 2010 

IHP / Infineon 2015 

 Wafer map of CML gate delay 
[Lachner 2014] 
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SiGe HBT performance improvements 

fT, fmax vs. extrapolation frequency 
for an N-SEG EEB example 

For further optimization IHP also uses their HBT with Non-Selective Epitaxial Growth 
(N-SEG) of the base and Elevated Extrinsic Base (EEB) [Heinemann et al. 2010] 
• Other method to achieve low base link resistance 
• Similar RF performance as EBL 
• N-SEG control is simpler than SEG 
 easier realization of aggressively scaled profiles 

 

fmax close to 600 GHz demonstrated 

• Lateral scaling & further  optimized base profile 

Schematic cross section [Heinemann et al. 2010] 

fT 

fmax 
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Summary 

● Laterally and vertically scaled conventional DPSA-SEG HBT 
from DOTFIVE has been integrated into 130nm BiCMOS with 
only marginal influence on high speed performance 
tD: 2.5ps,  fmax: 370GHz 

 Design platform for next generation SiGe MMICs, e.g. for 

automotive radar  

● This conventional architecture is limited by the base link 
region (base resistance) 

● Novel device architectures overcome this limitation, offer low 
base link resistance and provide key performance metrics like 
tD ~ 1.7ps or fmax ~ 600 GHz 

● The achieved results are a base for further lateral and vertical 
scaling 

 

 

 

 

 



SiGe for mm-Wave and THz 24 September 6, 2015 

Acknowledgement 

 
• Dotseven has received funding from the European Union’s Seventh 

Programme for research, technological development and demonstration 
under grant agreement N°316755, which is gratefully acknowledged. 

 
 
 
 
 

• Many thanks to our DOTSEVEN partners for the extremely fruitful 
cooperations, and to the numerous colleagues at Infineon and IHP 
who have achieved these technology results. 

 
 

 



SiGe for mm-Wave and THz 25 September 6, 2015 

References 

[Chevalier et al. 2011]  P. Chevalier, T. F. Meister, B. Heinemann, S. Van Huylenbroeck, W. Liebl, A. Fox, A. Sibaja-Hernandez, A. Chantre, 
        “Towards THz SiGe HBTs,” Proc. of the IEEE BCTM, 2011, pp. 57-65, DOI: 10.1109/BCTM.2011.6082749. 

[Fox et al. 2011]    A. Fox, B. Heinemann, R. Barth, S. Marschmeyer, C. Wipf, Y. Yamamoto, “SiGe:C HBT  architecture with epitaxial 
        external base”, Proc. of the IEEE BCTM, 2011, pp. 70-73, DOI: 10.1109/BCTM.2011.6082751  

[Fox et al. 2015]    A. Fox, B. Heinemann, H. Ruecker, R. Barth, G. Fischer, S. Marschmeyer, C. Wipf, K. Aufinger, J. Boeck, S. Boguth, 
        H. Knapp, R. Lachner, W. Liebl, D. Manger, T. F. Meister, A. Pribil, J. Wursthorn, “Advanced Heterojunction Bipolar 
        Transistor for Half-THz SiGe BiCMOS Technology”, IEEE Electron Device Letters, 2015, 
        DOI: 10.1109/LED.2015.2432130 

[Heinemann et al. 2010] B. Heinemann, R. Barth, D. Bolze, J. Drews, G. G. Fischer, A. Fox, O. Fursenko, T. Grabolla,  U. Haak, D. Knoll, 
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