

EUROPEAN MICROWAVE WEEK 2015

SIX DAYS . THREE CONFERENCES . ONE EXHIBITION

PALAIS DES CONGRÈS, PARIS, FRANCE SEPTEMBER 6 - 11, 2015

Exhibition Opening Hours:

- Tuesday 8th September: 9.30 18.00
- Wednesday 9th September: 9:30 17.30
- Thursday 10th September: 9:30 16.30

Optimization of Vertical Doping Profiles for High-Speed SiGe HBTs

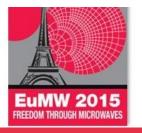
H. Rücker, B. Heinemann, J. Korn IHP, Frankfurt (Oder), Germany ruecker@ihp-microelectronics.com

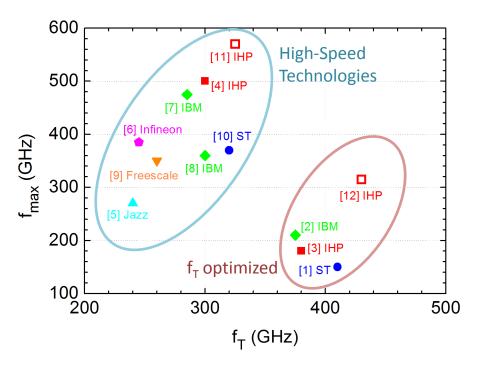
WS12: EuMIC - SiGe for mm-Wave and THz

Outline

- Introduction
- HBT fabrication
- RF characterization
- Device simulation
- Analysis of profile variations
- Summary

Introduction


- Speed optimization of HBTs involves:
 - Scaling of vertical profiles for high f_T
 - Scaling of lateral dimensions and advanced device architectures for low external parasitics, high f_{max}
- This talk focused on vertical profile
 - Explore potential for f_T improvement
 - Combine most promising profiles and advanced lateral device geometries in next step

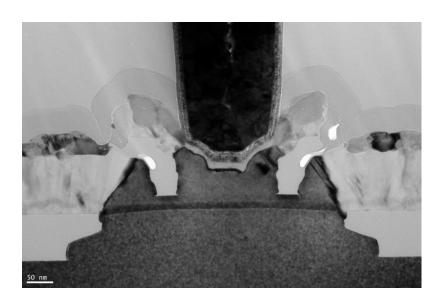

f_T Improvement by Vertical Scaling

- Reduce base width \rightarrow low $\tau_{\rm R}$
 - Narrow as-deposited profile
 - Low thermal budget
 - Challenge: maintain low resistances
- Steep Ge slope \rightarrow low $\tau_{\rm B}$
- Reduce BC depletion width \rightarrow low τ_{BC}
 - Increase collector doping (SIC)
 - Suppressed Kirk effect, higher j_C
- Reduce EB depletion width \rightarrow low $\tau_{\rm E}$
 - Reduced compensated charge (C_N) in EB depletion region

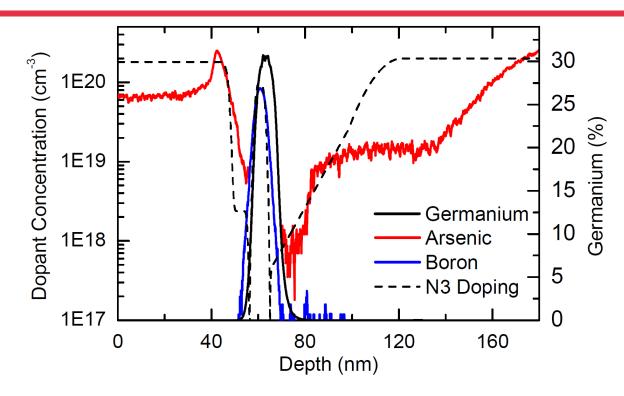
f_T/f_{max} Performance

- [1] Rieh et al. IPRM 2003
- [2] Heinemann et al. IEDM 2004
- [3] Geynet et al. BCTM 2008
- [4] Heinemann et al. IEDM 2010
- [5] Preisler et al. BCTM 2011
- [6] Lachner et al. ECS 2014
- [7] Liu et al. ECS 2014
- [8] Pekarik et al. BCTM 2014
- [9] John et al. BCTM 2014
- [10] Chevalier et al. IEDM 2014
- [11] Böck et al. BCTM 2015 (submitted)
- [12] Korn et al. BCTM 2015 (submitted)

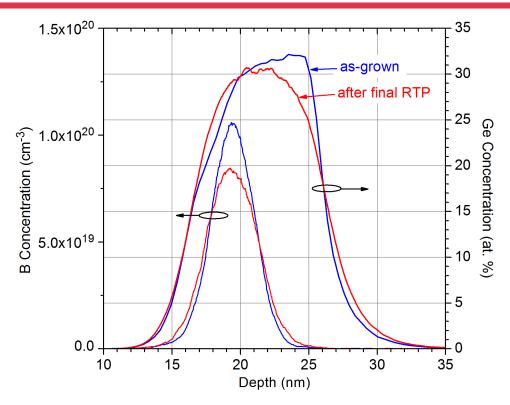
- Speed-optimized technologies demonstrate peak f_T values of 300-320GHz and simultaneously f_{max} up to 500 GHz
- Significant progress for f_{max}
- Only limited progress for f_T over last years (often on cost of f_{max})
- Simulations suggest that peak f_T values close to 1 THz may be achievable [Schröter et al., TED 2011]


Outline

- Introduction
- HBT fabrication
- RF characterization
- Device simulation
- Analysis of profile variations
- Summary


Process Flow

- Experimental process based on SG13G2 technology of IHP
 - CMOS process sequences skipped
 - HBT fabrication as in SG13G2
 - Collector regions isolated by STI
 - Non-selective base epitaxy
 - Elevated extrinsic base formed after emitter structuring
 - Dimensions of emitter windows and BE spacers relaxed here
 - For details: Rücker et al, SiRF 2012
 - Spike RTP reduced from 1050°C to 1030°C
 - Standard cobalt salicidation
 - Only 3 Al interconnect layers


Doping Profile

- SIMS profiles of B, As, and Ge measured at the end of fabrication process
 - Profile N3 from a theoretical performance study served as starting point [Schröter et al SiRF 2014]
 - B and Ge profiles are close to theoretical suggestion
 - Proposed steep increase of collector doping could not be reproduced with present process

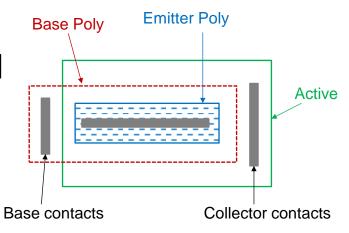
Dopant diffusion

- Very little B diffusion during present low-temperature fabrication process
- Maintaining tailored Ge profiles is challenging due to enhanced Ge diffusion at high Ge concentrations

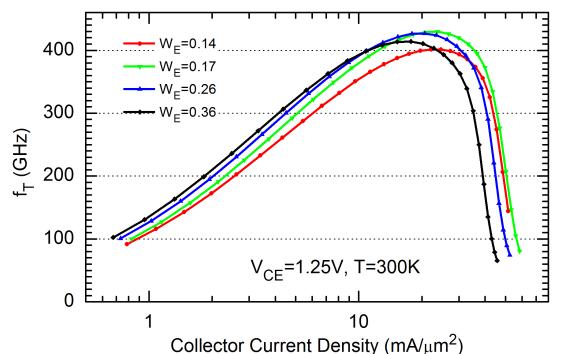
Fabricated Profiles Variants

		P1	P2	Р3	P4	P5
		Reference	Cap + 1.5nm	Cap + 3nm	Reduced SIC	Ge extended in BE junction
R_{sbi} (Ω)	Tetrode	2.7	2.6	2.5	2.6	2.5
BV _{EBO} (V)	10 μA/μm²	1.0	1.2	1.5	1.2	1.2
BV _{CBO} (V)	1 μA/μm²	4.0	4.1	4.1	5.5	3.9
BV _{CEO} (V)	I _B reversal	1.45	1.45	1.5	1.55	1.6

- Variations of cap thickness, SIC doping, and Ge profile
- R_{sbi} sufficiently low for high f_{max} of scaled devices
- Breakdown voltages reduced do to smaller EB and BC depletion width but still in an acceptable range for targeted high-speed applications

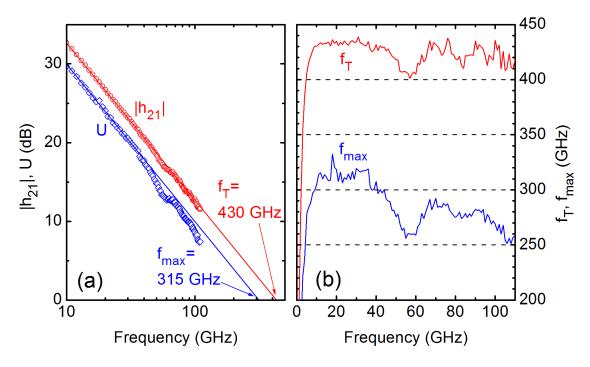

Outline

- Introduction
- HBT fabrication
- RF characterization
- Device simulation
- Analysis of profile variations
- Summary


HBT Layout

- Emitter and collector contacts formed in one active area
- Base and collector contacts formed at the edges of the emitter stripe
 - Minimizes overlap area of base poly and collector
 - Based on SG13G2 HBT layout
- Emitter widths ranging from 0.14 to $0.36~\mu m$
 - Common emitter lengths 1 μm
 - RF measurements for 8 HBTs in parallel

Measured f_T vs. I_C



Korn et al. BCTM 2015

- f_T at low I_C increases with increasing emitter width due to reduced impact of parasitic capacitances from device perimeter
- Larger devices show earlier roll-off of f_T at high current densities
- Highest peak f_T of 430 GHz for HBT with intermediate W_E of 0.17µm

Extraction of f_T and f_{max}

- f_T and f_{max} extracted from $|h_{21}|$ and U with a slop of -20dB/dec and averaged over measurement frequencies from 10 to 40 GHz
- Peak f_T/f_{max} values of 430 GHz/315 GHz for device with $A_E=8x(0.17x1.01)\mu m^2$

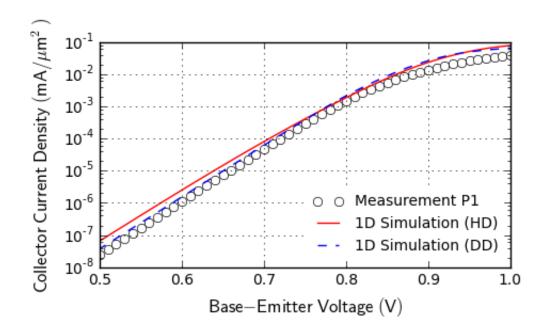
Impact of Emitter Width

Parameter	Method	D1	D2	D3	D4
W _E (μm)	SEM	0.14	0.17	0.26	0.36
L _E (μm)	SEM	0.99	1.01	0.97	0.97
Peak f _T (GHz)	V _{CE} =1.25V	402	430	426	414
j_{c} (mA/ μ m ²)	@ peak fT	23	23	20	17
R _{TH} (K/W)	Russo, 2009	9340	9200	8870	8470
ΔT_{j} (K)	@ peak fT	37	45	56	63

- Larger devices reach peak f_T at lower current density
 - Larger self heating
 - Increased impact of R_C
- Focus on device D2 for analysis of different vertical profiles
 - Compromise with respect to impact of parasitics from device perimeter and degradation due to self heating

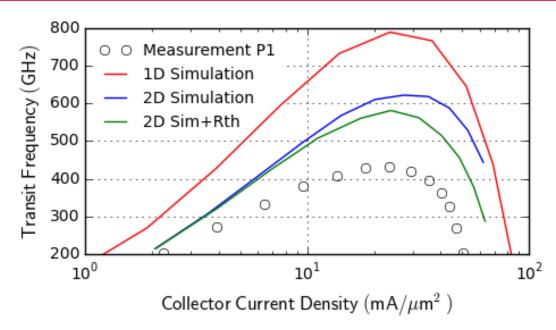
Outline

- Introduction
- HBT fabrication
- RF characterization
- Device simulation
- Analysis of profile variations
- Summary



Device Simulation

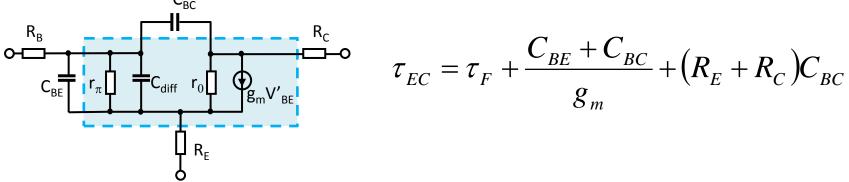
- Hydrodynamic simulation used for qualitative study of impact of profile variations on f_T
 - Sentaurus-Device
- Focus on 1D simulations
 - 2D and 3D profiles of real devices hardly accessible
 - Comparison of the performance potential of different vertical profiles


Simulated I_C

- SIMS measurements of doping and Ge profiles used as input
- Simulation overestimates I_C at V_{BE} >0.9V due to R_E and R_C components missing in the simulation domain
- Ideality factor nI_C at V_{BE}~0.7V overestimated by hydrodynamic (HD) simulations

Simulated f_T

- 1D simulation of f_T based on measured SIMS profiles
- Depletion widths and 2D doping at device edges adjusted to measured capacitances
- Measured R_{TH} used for simulation with self heating
- Full inclusion of R_E , R_C , and 3D capacitances in simulation domain would decrease simulated f_T further



Transit Time

 Response of a transistor to AC signals related to modulation of charges inside the transistor

$$\frac{1}{2\pi f_T} = \tau_{EC} = q \int_0^{L_x} \frac{\partial n(x)}{\partial j_C} \bigg|_{V_{CE}} dx = q \int_0^{L_x} \frac{\partial p(x)}{\partial j_C} \bigg|_{V_{CE}} dx$$

• For a simplified equivalent circuit τ_{EC} is often expressed by τ_{F} and external parasitics

Regional Contributions to τ_{EC}

 Segmentation into stored minority charges and depletion charges: [Van den Biesen, 1986]

$$\tau_{EC} = \tau_E + \tau_B + \tau_C + \tau_{EB} + \tau_{BC}$$

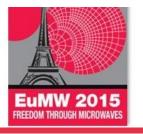
• Minority holes in emitter:

$$\tau_E = q \int_0^{x_{mE}} \frac{\partial p}{\partial j_C} dx$$

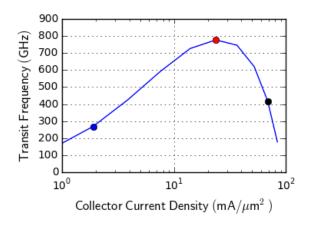
• Minority electrons in base:

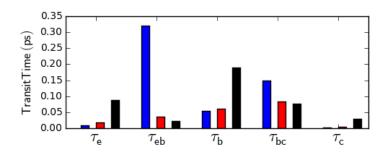
$$\tau_{B} = q \int_{x_{mE}}^{x_{mC}} \frac{\partial n}{\partial j_{C}} dx$$

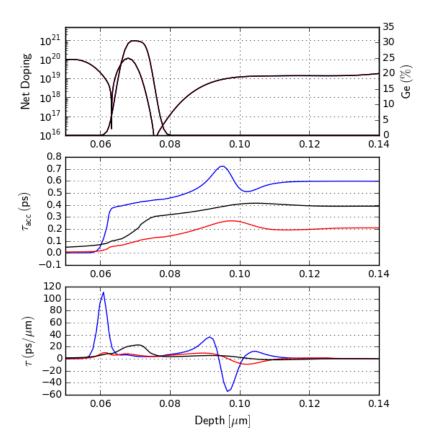
Minority holes in collector:


$$\tau_C = q \int_{x_{mC}}^{L_x} \frac{\partial p}{\partial j_C} dx$$

• EB depletion charge:

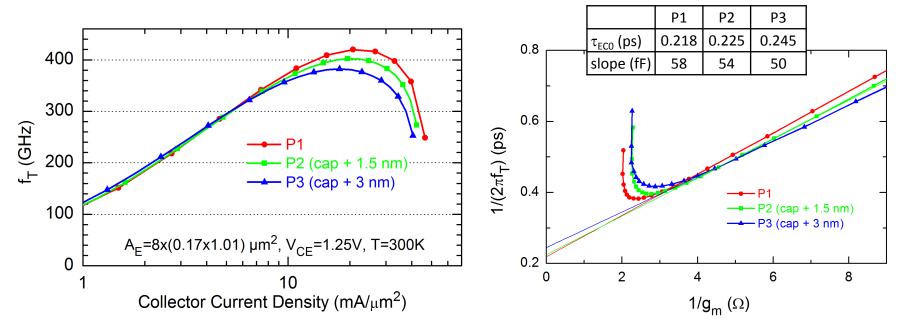

$$\tau_{EB} = q \int_{x_{mE}}^{x_{mC}} \frac{\partial (n-p)}{\partial j_C} dx$$


BC depletion charge:


$$\tau_{BC} = q \int_{x_{mC}}^{L_x} \frac{\partial (n-p)}{\partial j_C} dx$$

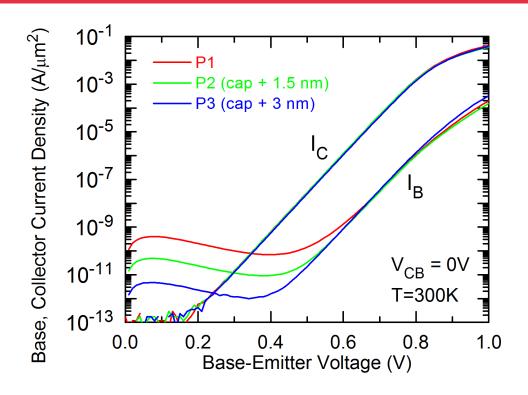
1D Simulation: f_T and delay times

- Depletion charges dominate τ_{EC} at low I_{C}
- Electrons accumulation in base dominate τ_{EC} at high I_C

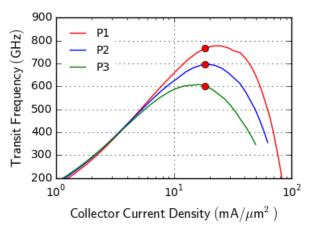


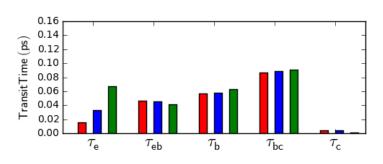
Outline

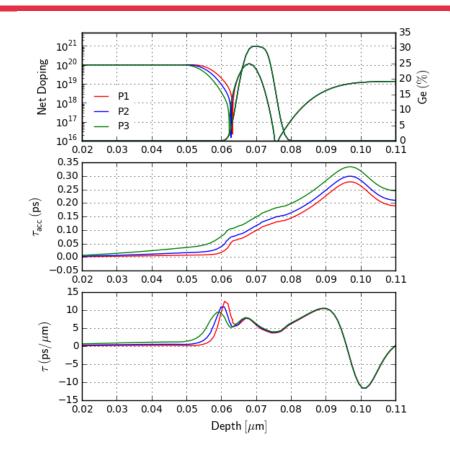
- Introduction
- HBT fabrication
- RF characterization
- Device simulation
- Analysis of profile variations
 - Base emitter junction width
 - Collector doping level
 - Ge profile
- Summary


Experiment: EB junction width

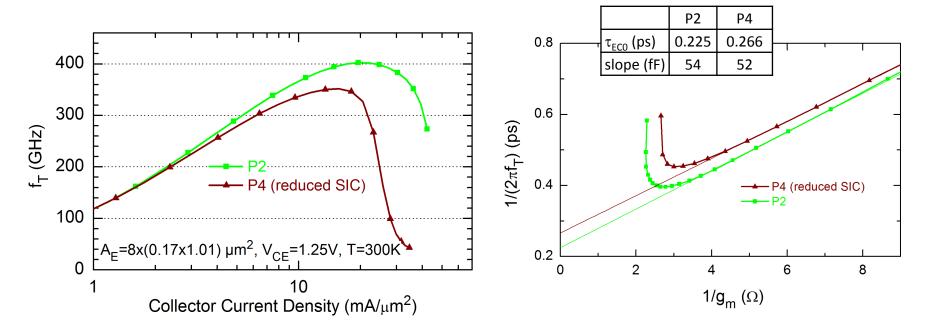
- Measured peak f_T increases with reduced EB junction width (Si cap thickness)
- Thinner cap thickness resulted in reduced τ_{ECO} and increased depletion capacitance

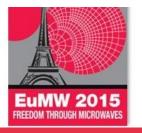

Gummel Characteristics

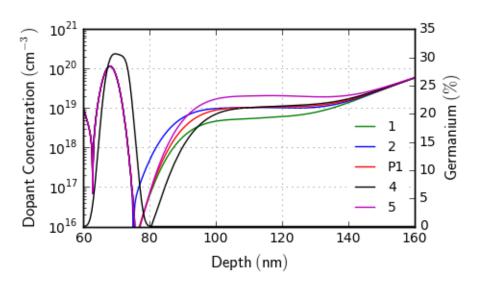


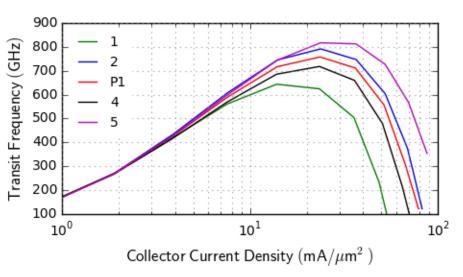

• Enhanced tunneling currents due to reduced EB junction widths result in non-ideal I_B for $V_{BE} < 0.5 \text{ V}$

1D Simulation: EB Junction Width



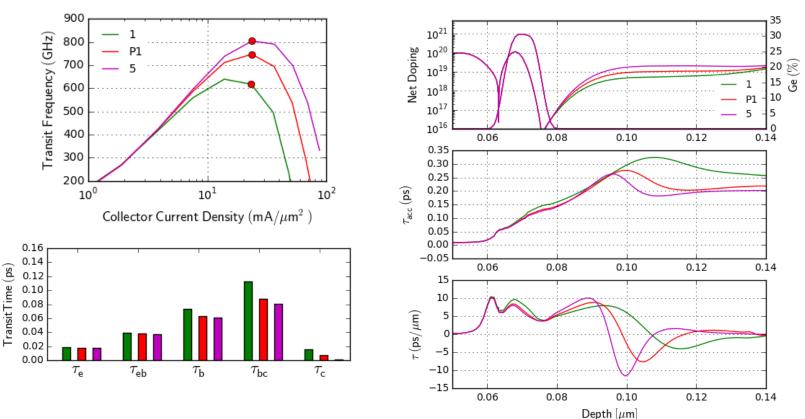

 Thinner EB junction width reduces storage of compensated electron and hole charges (C_N) in depletion region and emitter


Experiment: Collector Doping

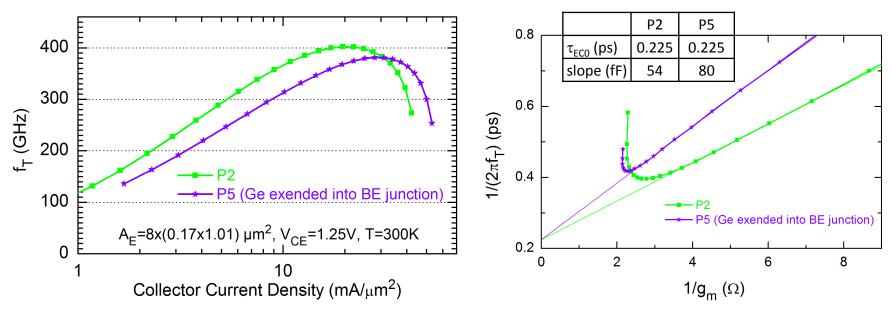


- Increased doping level in SIC region from ~7E18 cm⁻³ (P4) to ~1.5E19 (P2)
- Higher collector doping shifts peak f_T to higher j_C
- Reduced τ_{FCO} due to reduced collector transit time

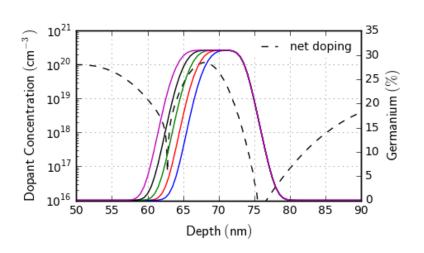
1D Simulation: Collector Doping

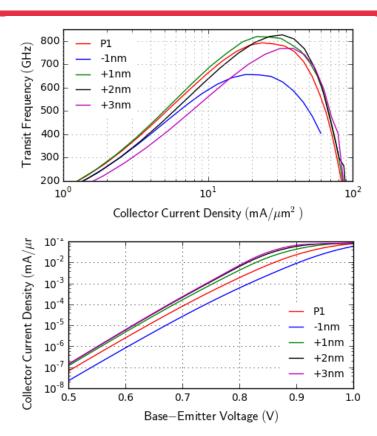


- 50% lower SIC doping level
- 2. SIC shifted 4 nm towards base
- 3. Reference profile P1
- 4. SIC shifted 4 nm towards collector
- 5. 2X higher SIC doping
- \rightarrow Peak f_T most sensitive to variation of doping level at the edge of the depletion region


1D Simulation: SIC Doping Level

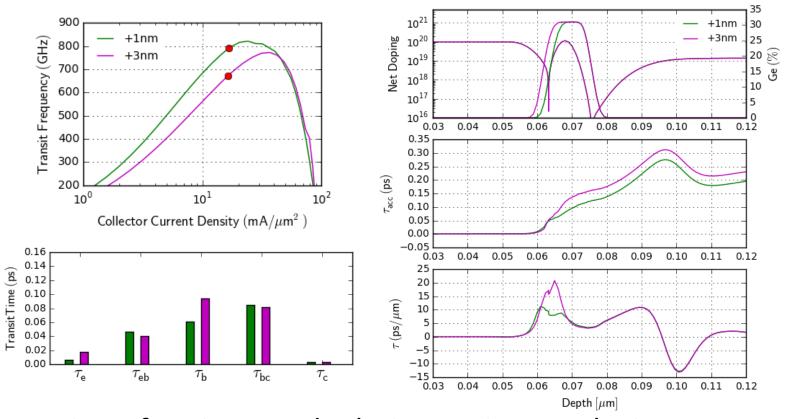
- Higher collector doping shifts degradation of f_T to high j_C
- Reduced charge storage in thinner BC depletion region

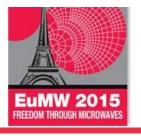

Experiment: Ge Profile Split



- Ge profile P5 extends about 3 nm deeper into BE junction than Ge profile P2
- Profile P5 requires higher j_C for the same f_T
- Enhanced slope of 1/f_T vs. 1/g_m for P5 (higher C_{BE}+C_{BC})

1D Simulation: Various Ge Profiles




- Onset of Ge gradient shifted in steps of 1 nm towards emitter
 - Similar f_T for profiles P1 and +1nm shift of Ge towards emitter
 - Degradation of f_T for further shift of Ge flank towards emitter or base

1D Simulation: Various Ge Profiles

- Extension of Ge into BE depletion region results in enhanced electron and hole storage there (C_N↑)
 - Reduction of f_T at all current levels

Conclusions

- Peak f_T/f_{max} of 430 GHz/315 GHz realized for HBTs with optimized vertical doping profile
 - Further increase of f_{max} expected from lateral scaling
- About 5 nm wide B profiles with R_{sbi} of 2.7 $k\Omega$ measured at end of fabrication process
- Charging times τ_E and τ_{EB} were significantly reduced at cost of higher tunneling currents at low V_{BE}
- Higher collector doping (N_C>1.5E19 cm⁻³) at edge of BC depletion region could reduce charging time $\tau_{\rm C}$ further
- Reduction of parasitic capacitances at device perimeter and restriction of self heating essential for highest f_{T}