
Concepts for Highly Integrated 

Automotive Radar Circuits 

Herbert Jäger 

DICE GmbH & Co KG 

Herbert.Jaeger@infineon.com 

(Part I) 

 

Matthias Porranzl 

Johannes Kepler University Linz 

Porranzl.External@Infineon.com 

(Part II) 

WS12: EuMIC - SiGe for mm-Wave and THz 

SiGe for mm-Wave and THz 

Content – Part I 

• A short history of SiGe in automotive radar (AR) 

• Upcoming system level requirements 

• Concepts to meet those requirements 

• Taking a look at radar outside automotive 

• The interplay of systems engineering and circuit 

design 
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SiGe in AR – the very beginnings 
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When SiGe first entered the AR field, it had to compete against systems that were 

highly fragmented over many individual special-function chips or discrete 

semiconductors. Our first ‘RF system’ sketches reflect this mindset … 
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Looking only at individual performance parameters, SiGe could not directly 

compete against those special-function chips. 

SiGe in AR – the very beginnings 
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SiGe in AR – the very beginnings 

 

 

 

 

 

 

 

 

 

 

The key to success was integration:  

When combining multiple function blocks into one single chip, SiGe could 

leverage a benefit. 
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GaAs discrete - 2005 

RF-Board 2nd Gen. 

62 x 68 mm² (~42 cm²) 

RF-Board 3rd Gen. 

25 x 35 mm² (~9 cm²) 

Ref. Osc. 

4x 

MIX. 
Ref. Osc. 

Antennas 

Antennas 

SiGe 

2009 

Range Accuracy 

Distance 

m 

LRR2 (GaAs) 

LRR3 (SiGe) 

2 – 150 

0.5 - 250 

0.5 

0.1 

Relative 
Velocity 

m/s 

LRR2 (GaAs) 

LRR3 (SiGe) 

–60 to + 20 

-80 to +30 

0.25 

 0.12 

Angle 

deg  

LRR2 (GaAs) 

LRR3 (SiGe) 

8 

15 

0.4 

0.1 

GaAs discrete (LRR2) vs. 

SiGe integrated (LRR3) 
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Integration in SiGe 

• All mm-Wave functions 

in one chip 

• Four transmit/receive  

(TRX) channels 

• Built-in self test;  

monitoring 

• Programmable  

features 

through  

digital interface 

 

 

 

 

  What are the limits for integration in purely bipolar SiGe? 

ns

Ref. (1) 
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Limitations of pure SiGe bipolar 

• RF functionality has been demonstrated:  

+ transmit output power 

+ VCO phase noise and tuning bandwidth 

+ receiver noise floor, linearity and conversion gain 

+ Access to relevant parameters to allow ‘health’ monitoring, e.g. power and 

temperature sensors 

+ Contol methods and algorithms can be applied externally (serial interface) 

• On the other side: 

– Bipolar transistors are not the first choice for implementing more complex digital 

functions (circuit size, current consumption, design tools) 

– Higher RF I/O count à larger chip size, PCB fan-out 

– Integrating more functions (e.g., more transmit or receive channels) in this 

technology will result in too high power dissipation 
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What comes next? 

• In Europe each year about 1.3 
million traffic accidents cause: 
– More than 40.000 fatalities 

– Economic damage of more than 200 billion 
€ per year 

• Human error is involved in over 90% 
of accidents 
 

• Automotive radar help drivers to 
– Maintain a safe speed 

– Keep a safe distance 

– Avoid overtaking in critical situations 

– Safely pass intersections 

– Avoid crashes with vulnerable road user 

– Reduce severity of an accident 

– Drive more efficiently 
en.wikipedia.org/wiki/Rear-end_collision#mediaviewer/File:Car_accident_-_NSE_Malaysia.jpg 

http://en.wikipedia.org/wiki/File:401_Gridlock.jpg 

Moving from 

comfort functions  

(e.g. adaptive cruise control)  

in luxury cars  
to  

safety functions  

(e.g., emergency braking, pre-crash preparation)  

in every car. 
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The Safety Market –  

EuroNCAP* is a strong driver 

• European OEMs consider 5 stars a MUST and add required technology to new platforms 

• From 2016 onwards , a 5 star rating is not possible without radar/camera 

• Radar/camera combination standard equipment for EU cars  

• Other regions expected to follow the EU with several years delay (e.g. Korea in 2016) 

• From 2018 e.g. cyclist protection is expected raise the bar further NCAP = New Car Assessment Program 

VRU = Vulnerable Road User 

AEB = Autonomous Emergency Braking 

2014 2012 2016 

AEB city 

AEB interurban + 
(LDW) 

Pedestrian protection                               Passive 
 

AEB pedestrian 
 

Occupant 
Protection              Passive 

Mandatory for 5* 
 

Safety support 
 

2018 

Bicyclist/VRU* protection                                                                 passive 
 

tbd 
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New applications – new requirements  

• Top-level system requirements: 
– High availability – provide an operational system also in adverse conditions 

– High data quality – acquire relevant radar data; identify and avoid false 

targets 

– Functional safety – Monitor if the system is in nominal condition; quickly 

detect a faulty function; do not pass on false data 

– Higher resolution –  (e.g., pedestrian detection) à bandwidth, number of 

antennas à MIMO, virtual antennas 
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New system concepts 

• What is different for upcoming system concepts? 

– Available processing power / DSP is growing continuously, new concepts become 

feasible 

– Digital beamforming (RX), multiple RX channels 

– Virtual antenna arrays, multiple-input, multiple output  (MIMO) radar through 

sophisticated signal processing 

– Very fast ramps, higher sweep bandwidth, signal processing over multiple ramps 

– A great variety of FMCW scenarios, i.e., ramp times and ramp bandwidth,  

resulting in the requirement for  

• a very flexible IF processing chain (gain steps, high-pass / low-pass corner frequencies, 

sampling rates) 

• A very agile PLL / frequency ramper and higher bandwidth VCO 

– Different modulation schemes, e.g. BPSK, coded, pseudo-noise … 

– Integrated support for functional safety: ISO 26262; ASIL levels …  
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How can these requirements be met? 

What does it mean on chip level? 

• A larger number of RF channels / functions with higher performance  

and/or lower power consumption 

– Use a faster SiGe HBT technology, and wisely balance performance vs. power consumption 

• Fast, agile and versatile control of many parameters, for example: 

– depending on ramp scenario, boost PLL settling behavior by switching charge pump current 

and loop filter bandwidth; use two-point modulation 

– Depending on IF bandwidth and signal level, switch gain in RX chain, high-pass and low-pass 

corner frequencies, data rate 

• Design with functional safety in mind, for example 

– Avoid design with hard to detect failure modes 

– Autonomous detection of abnormal circuit function or unusual conditions, and 

– Raise an alarm to allow the sensor to enter a safe state 

These requirements can only be met with a faster SiGe HBT, combined with a fully 

capable CMOS technology. 

Bringing this complexity on a chip (SoC) also requires new methodology in 

concept and circuit design. 
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Why Next Gen in BiCMOS? 

System Partitioning! 

+ Optimum technologies for RF / analog / mixed signal 
and digital functions 

+ High performance SiGe (fmax=400 GHz) for lowest 
power consumption, phase noise, highest linearity 
and output power  

+ High performance MC can utilize most advanced 
digital CMOS 

+ Optimized and stable RF/AMS section for use with 
scalable MC solution 

+ Optimized cost / performance trade-off 

- Inferior performance of RF/AMS section if 
implemented in advanced digital CMOS  

- MC would always lag behind state-of-the-art as 
development cycles with RF/AMS included take much 
longer time 

- Waste of expensive CMOS area for non-shrinkable 
analog functions 

- Up-scaling to higher channel count by employment of 
multiple single chip units not cost-efficient 
(redundant MCs) or even not possible 
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Concepts 

• Digital beamforming (RX beamforming) and   

phased-array antennas (TX beamforming) 

 

• Virtual antenna arrays 

 

• Fast and flexible FMCW ramp generation 

 

• A highly flexible RX chain 
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Digital beamforming (TX and RX) 

• Multiple antennas are 

introduced for spatial 

resolution 

• Phased array approach is 

depicted 

• Complex weights are 

applied by amplitude 

control and phase 

shifting 

• Circuit requirement: 

High phase stability 

between TRX 

channels 
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The FMCW Principle 

• Single chirp: Range/Doppler  

coupled frequency  
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The FMCW Principle 

• Single chirp: Range/Doppler  

coupled frequency  

Ref. (2) 
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Uniform Linear Virtual Array 

Ref. (3) 
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Agile PLL frequency ramping 

• Minimize settling times by switching loop filter bandwidth  

and charge pump current 

x 4 ~ PFD 

CP  

~ 

: 32 

MMD 

VCO 
77 GHz 

Pre 
divider 

f out 

MASH 

C 1 C 4 

clk 
gen 

clk  

DAC  
coarse 

RAMPER 

gain 

ramp trigger 

trigger 
unit 

C 2 

C 3 R 2 R 2 p 

R 3 

R 3 p 

R 4 

R 4 p 

switch 

Loop  
Filter 

CP = charge pump 

PFD = phase-frequency detector 

MMD = multi-modulus divider 

MASH = noise shaping modulator 
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Agile PLL frequency ramping 

• Boost PLL speed by using two-point modulation 

 

 

 

 

 

 

 

 

Challenge:  

• VCO tuning characteristic is highly variable over the tuning range 

• Automatic optimum adjustment of all parameters (charge pump current, loop 

filter bandwidth, modulator DAC amplitude, coarse tune preset …) 

x 4 ~ PFD 

CP  3 . 3 V 

~ 
LF 

: 32 

MMD 

VCO 
77 GHz 

Pre - 
divider 

f out 

MASH 

C 1 C 4 

DAC 

Ramp 
modulation 

clk  

2 - point on 

control 

DAC  
coarse 

CP = charge pump 

PFD = phase-frequency detector 

LF = loop filter 

MMD = multi-modulus divider 

MASH = noise shaping modulator 
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• Advanced PLL concept evaluation for sawtooth ramp 

scenario: Df = 1 GHz; Tramp = 15 µs; Tidle = 1.5 µs 

 

• Results of dynamic evaluation: 

 

With advanced 
modulation technique 

Without advanced 
modulation technique 

THz

• Very fast ramp scenarios possible 

• Linear ramp generation 

• No cycle slips for frequency jumps 

• Reduced frequency overshoots 

• Dead time between ramps significantly reduced  

• PN spectrum unaffected 

Df 

T_ramp T_idle 

f 

t 

ff

Agile PLL frequency ramping 
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Test Ramp Scenario 

• Simulated Ramp scenario 

with accurate VCO model 

Frequency vs. time, ZOOM 

Frequency vs. time 

blue: instantaneous frequency 

red: boost on / off 
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Highly flexible RX chain 

 

 

 

 

 

 

 

• Flexibility is achieved by: 

– A high level of configurability in every single block 

– An overall ‘supervising’ control function to improve applicability 

– Moving as much functionality as possible into the digital domain 

 

This challenge is similar to mobile phone receivers supporting multiple standards 
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Let us take a look outside AR … 

• What other applications could be feasible with 

similar top level requirements? 

 

• How about a very compact, fully integrated short 

range sensor? 
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What could that sensor look like? 

• Integrate the complete radar in a single chip 

– Requires advanced semiconductor technology – B11HFC 

• Employ MIMO technique to create a larger array of virtual antennas 

• Integrate antennas in the package (AiP) 

– No RF PCB required; simple application 

• Use TRX channels instead of separate transmit / receive channels 

– This will yield an even larger virtual array. 

• Choose frequency band (Ref. 4) à antenna size, available bandwidth 

– Automotive: 76-77 GHz, 77-81 GHz 

– ISM: 61-61.5 GHz 

– SRD (short range device): 57-64 GHz,  122-123 GHz 
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Multiple TRX antennas 

• Use transmit + receive (TRX) 

channels instead of individual 

transmit and receive channels 

 

• Operating frequency: 77 GHz 

 

• Package size: 8 x 8 mm2 

 

• NOTE: This antenna placement 

has not been optimized for 

MIMO operation. 

 

(Ref. 5) 
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Antenna in package (AiP) at 160 GHz 

• Circuit design for higher 

frequencies is feasible with the 

next SiGe technology step 

 

• Antennas can be integrated in a 

standard embedded wafer level 

ball grid array (eWLB) package 

 

• directional antenna 

 

• This design was done in B7HF500, 

a precursor to B11HFC 

 

(Ref. 6) 
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Combining AiP and mono-static concept 

• Antennas aligned at the periphery  

of the eWLB package 

+ Maximize achievable aperture 

+ Non-uniform arrangement is possible with 

MIMO radar (Ref. 2) 

• Use TRX channels instead of  

dedicated TX and RX channels 

+ Best utilization of the available space 

+ Max. n(n+1)/2 virtual antennas (Ref. 3) 

+ Redundant virtual antennas 

– Potential blocking of receiver when antenna 

matching is insufficient 

– Degradation of available dynamic due to 

duplexing function (TX/RX separation) 

 

 

 

Associated virtual array 
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Content – Part II 

• Why monostatic radars? 

• Current implementation vs. quasi-circulator (QC) 

• Antenna mismatch and leakage cancelation 

• Impedance tuner – bipolar vs. BiCMOS 
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Monostatic radar 

n Why investigation in monostatic radars? 

o Monostatic radars reduce the physical area consumption 
for antennas and the RF transitions from chip to board by 
a factor of 2. 

o High resolution radars require many channels and the 
amount of RF ports in a package are limited. 

o In respect of a antenna in package system, only a few 
antennas can be placed. 
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Current implementation 

n The TX/RX separation in 77 GHz automotive 
radar systems is usually done by passive 
structures like a  180° ring hybrid so called 
rat-race coupler. 

n The rat-race exhibits a theoretical insertion 
loss of 3 dB in each direction, which directly 
degrades the noise figure. In practice, around 
4.5 dB are measured. 

n The relatively large physical dimension of the 
rat-race is also a problem in multi channel 
systems. 

n Therefore the investigation of active TX/RX 
separation units like a Quasi circulator(QC). 

 

 

Rat-

Race

λ/4

3λ/4

λ/4

λ/4

1

2

3

4
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Active Quasi Circulator 

n A QC performs TX/RX separation 
of transceiver modules. 

n The QC consists of a TX,  an 
ANTENNA and an RX port.  

n Circulators offers power flow only 
in one direction. 

n QCs additionally provide isolation 
from RX to TX port. 

 

 

S21 S32

QC1

TX PORT RX PORT

ANTENNA PORT

3

2

Ref. (1) 
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Active QC structure 

n In general, the QC consists of two BJT 
transistors, two λ/4-transmission lines and 
one resistor. 

n The power flow can be split in a TX- and an 
RX- path. 

 

 

GND

T1
GND

ANT

RX

Rba

TLλ/4TLλ/4

Z0

GND

Z0

GND

T2

Z0

GND

TX

QC

tran. stage

ANT

TXRXGND GND GND GND

GNDGND

Ref. (2) 
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Power flow in the QC 

n If Rba = Z0, the transmit signal appears 
in-phase at the base and the emitter of 
T1 and therefore the signal is isolated 
from the RX port. 

 

n T2 is assumed as unilateral. 

n The receive signal appears out-of-
phase at the base and the emitter of 
T1. Consequently, it is amplified by T1 
and transferred to the RX port. 

 

 

 

GND

T1
GND

ANT

RX

Rba

TLλ/4TLλ/4

Z0

GND

Z0

GND

TX-path

RX-path

T2

Z0

GND

TX
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QC vs rat-race 

n In theory, 3 dB of the TX signal is terminated by a resistor in both 
approaches. 

n Assuming T2 in the QC as unilateral, none of the receive signal is 
dissipated. This involves an improvement over the rat-race 
implementation. 

n As the QC is an active device, T1 adds some noise to the receive 
signal. 

n Therefore, when comparing a QC and a rat-race system with 
respect to noise figure, the whole receiver including the mixer has 
to be taken into account. 

n Based on the Friis formula, the shown QC system offers a better 
total NF if the following stages have a NF worse than 9.1 dB (2). 
For comparison, a published 77 GHz mixer processed in the same 
technology is stated with around 14.9 dB NF (3). 
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Mismatch at antenna port 

n One of the main problems in monostatic radars is the 
mismatch at the antenna port due to process variation.  

n It degrades the isolation performance in the QC as well as in a 
rat-race implementation. 

n This can be solved by a so called leakage canceler in the RF 
part or by a DC-offset compensation after the down 
conversion mixer in the IF domain. 

n In case of a DC-offset compensation, the mixer is still blocked 
by the reflected transmit signal and generates harmonics in 
the IF spectrum. 

n Therefore a leakage canceler solution is preferred to relax the 
requirements on the mixer. 
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Leakage canceler for the QC 

n Proposed solution is a impedance tuner 
instead of the resistor Rba. 

n By setting the impedance of the tuner 
to the actual antenna impedance  

 Ztune = ZA  

isolation is achieved again.  

n As ZA is not monitored in a system 
directly, the tuner has to be controlled 
based on the DC-offset of the mixer. 

n Also other effects like process variation 
can be compensated in this way. 

 

 

 

GND
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GND
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Tuner implementation 

n In a pure bipolar process, the impedance tuners usually 
are implemented with varactors, which require an 
additional digital/analog converter (DAC) for controlling 
them. 

n A BiCMOS process offers the tuner implementation based 
on FET switches, which can be digitally controlled by 
conventional SPI interface. 

n This makes the system compact and simple to control. 
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Conclusion 

n The monostatic concept is useful for applications in limited 
space 

n The systematic penalty by using a passive coupler, e.g., a 
rat-race can be avoided with an active QC. 

n Test circuits have already been implemented. 

n New concepts for leakage cancelling are under 
investigation.   

n A BiCMOS process facilitates the implementation of a 
compact system 
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