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European research founding: 

SiGe HBTs in BiCMOS technology 
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RF and mmWave applications 

SiGe vs. III-V (compound) 

Low cost  

 BiCMOS technology and SoC 

 Scaling and bandgap engineering  



Performance and reliability 
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FoM: fT, fMAX, BVCEO, BVCBO, β 

Scaling and trade-offs 
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Performance and reliability 
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Performance 

improvement 

Scaling  

High doping Higher electric field 

Higher current density 

Higher thermal resistance 
Impact ionization 

Self-heating 

Hot-carrier 

Performance improvement reduces safe-operating-area (SOA) 

due to electrical and thermal issues. 



DOTSEVEN european project: motivation 

● The European project DOTSEVEN supports the 

development of SiGe HBTs with fMAX of 700 GHz 

● Highly-scaled and doped architectures are explored and 

aggressive operating conditions are applied 

● Higher electric fields and current densities may cause 

performance degradation and might jeopardize speed and 

long-time reliability 

● Device reliability is an increasingly important topic in circuit 

and system design 
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http://www.dotseven.eu. 



Device development framework 
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SIMULATION CHARACTERIZATION 

MODELING 

 Reduce time-to-market and cost 

 Manage performance vs. reliability constrains 

 predicts device characteristics of anticipated 

wafer fabrication technology  

 explores the physics of scaled devices and 

investigate new device architectures 

Calibrated TCAD: 



SiGe HBT development framework 
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Calibration of hydrodynamic (HD) models for TCAD 

Development of transport  parameters for HD simulation in TCAD 

DC, pulsed and RF on wafer experimental measurements 

Reliability and SOA reduction with scaling and RF improvements 

SIMULATION CHARACTERIZATION 

MODELING 



Reliability and SOA with scaling and RF improvements 
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Electrical instability phenomena 
Impact ionization 

Tunneling 

Pinch-in 

Thermal resistance and self-heating 

Hot-carrier phenomena 

SIMULATION CHARACTERIZATION 

MODELING 



Electrical instability phenomena - breakdown 
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Impact ionization 

 

Avalanche breakdown 

Tunneling 

 

Zener breakdown 



SiGe HBTs electrical breakdown measurements 
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BVCBO, Open emitter  

Collector-base breakdown voltage 

 

BVCEO, Open base 

Collector-emitter breakdown voltage 
 
Impact ionization model calibration (Okuto, Van Overstraeten models, etc.) 

 

 

BVCEB, Open collector 

Emitter-base breakdown voltage 
 
Tunneling models calibration supported by low temperature measurements. 

 



Thermal resistance and self-heating 
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Impact of scaling on the thermal behavior 

Thermal resistance extraction 
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Thermal resistance and self-heating 
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Impact of scaling on the thermal behavior 

Thermal resistance extraction 
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Hot-carrier damage standard stress techniques 
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 Reverse emitter-base stress (high VEB) 

 Forward stress (high JC and T) 

 Mixed-mode stress (high JE and high VCB) 

Studied (experiments and TCAD) for HBTs fabricated by: 



Hot-carrier damage: trap formation 
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Very high localized electrical fields 

Generated hot carriers: 

1. Damage the Si/SiO2 interface → interface traps 

2. Surmount the Si/SiO2 barrier → oxide traps/charges 

E/B spacer 

STI 



Hot-carrier damage 
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Aging mechanisms are related to impact 

ionization and tunneling phenomena  

Degradation worsen with RF performance improvement 



Outline 

 Reverse emitter-base stress  
Methods and techniques 

Evaluation and modeling of results 

Recovery experiments 

 Mixed mode stress 
Evaluation of results, modeling and TCAD  

Recovery experiments 

 Stress at the SOA edge 
Evaluation and modeling of results 

TCAD and SHE simulations 
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Reverse emitter-base stress methods 
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 Open collector (OC)  

 VEB<0, OC or VBC=0 Hot holes 

 Forward collector (FC) 

 VEB<0, VBC>0 Hot electrons and hot holes 

Standard methods are not exploitable when AC 

measurements are to be performed 



Proposed technique for EB stress 
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VEB<0, VCE=0 (i.e., VEB=VCB>0)  

 

• IC is negligible during stress 

• An uncontrolled forward biasing of the SC junction 

is avoided 

• Monitoring of the RF performance during stress 

interruptions is allowed without any mechanical 

movement in the experimental setup 



Verification of the stress technique 
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● VEB-stress=3.5 V, VCE=0 V ↔ VCB=3.5 V 

•IC=7 µA, IB=120 µA   

•IE=-(IB+IC)≈Istress 

 

● VEB-stress=3.5 V, VCE=-1.5 V ↔ VCB=2.0 V 

•IC=-68 mA, IB=-2mA 

•IE=-(IB+IC)-IS≠Istress 

9x(0.13x0.93) 

 

 

 

9x(0.15x0.93) 



The stress current is unchanged and the slight discrepancy 

can be ascribed to the small difference in the aspect ratio 

Verification of the stress technique 
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Reverse EB stress experiments – 130 nm SiGe:C 
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Infineon Technologies (IFAG) devices: 

̵ fMAX/fT=380/240 GHz 

̵ n=1÷ 9, several combinations of WE/LE 

̵ BEC & BEBC configuration  

̵ RF layout, GSG pads configuration, TA=300 K 

Innovation for high performance microelectronics (IHP) devices: 
̵ fMAX/fT=300/240 GHz 

̵ n=4, several combinations of WE/LE 

̵ CBE configuration  

̵ RF layout, GSG pads configuration, TA=300 K 

̵ Statistics: 3 dies 



Technology under test, IHP 
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̵ fMAX/fT=300/240 GHz 

̵ CBE configuration  

̵ n=4, , AE=n∙(WE∙LE), PE=2∙n∙(WE+LE)  

̵ RF layout, GSG pads configuration, TA=300 K 

̵ Statistics: 3 dies 

AE=Nx(WExLE) [µm2] Configuration AE [µm2] PE [µm] 

4x(0.13x0.88) CBE 0.4576 8.08 

4x(0.16x0.88) CBE 0.5632 8.32 

4x(0.19x0.88) CBE 0.6688 8.56 



Stress conditions, IHP 
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VEB-stress=3.75÷4.50 V 

VCE=0, VC=VE=0 



Degradation results: Gummel plot 
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Degradation results: Gummel plot 
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IB increases, IC is not affected → βF=IC/IB decreases 

Degradation strongly shrinks in the high-bias region 
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Traps formation 
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 Very high localized electrical fields 

 Generated hot carriers: 
 Damage the Si/SiO2 interface      interface traps 
 

 Surmount the Si/SiO2 barrier      oxide traps/charges 

E 
B 

SiO2 



Degradation results: ΔIB(t)=IB(t)-IB(0) vs. t 
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Degradation results: ΔIB(t)=IB(t)-IB(0) vs. t 
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Degradation results: ΔβF-MAX  vs. t 
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Degradation results: ΔβF-MAX  vs. t 
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 For a given emitter layout, maximum gain degradation 

follows the same trends of ΔIB(t)  

 Performance of the smallest device degrades more 

rapidly → increasing of PE/AE 
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Degradation results: ΔIB(t)/PE  vs. t 
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Degradation results: ΔIB(t)/PE  vs. t 
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 Damage is mostly located around the emitter perimeter, 

adjacent to the space charge region between the emitter 

and the base 
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Stress effects on the AC performance 

35 

 Different samples, fast measurements evaluation 

 Junction capacitances, AC current gain H21, fT, and fMAX 
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Stress effects on the AC performance 
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 No significant variations have been detected for RF 

parameters (exception H21) 
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Technology under test and stress conditions, IFAG 
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AE=Nx(WExLE) [µm2] Configuration VEB-stress [V] VCB [V] 

9x(0.13x0.93) BEC 3.5 3.5 

9x(0.15x0.93) BEC 3.5 2.0 

3x(0.13x2.73) BEC 3.5 3.5 

3x(0.13x2.73) BEBC 3.5 3.5 

1x(0.13x9.93) BEC 2.5 2.5 

1x(0.23x9.93) BEC 3.0 3.0 

̵ fMAX/fT=380/240 GHz 

̵ n=1÷ 9, several combinations of WE/LE 

̵ BEC & BEBC configuration  



Degradation results: ΔIB(t) vs. t 
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ΔIB(t)/PE is almost comparable for different devices 
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Degradation results: nR vs. t 
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nR slightly exceeds 2 and mildly decreases with stress time 

SRH recombination mechanism via midgap traps, but… 

( ) ( ) (0)

( ) exp
( )

B B B

BE
SR

R

I t I t I

q V
I t

n t k T

  

 
   

  

1 10 100 1000

10
-8

10
-7

10
-6

n
R

I
B

V
BE

=0.7 V

 9x(0.13x0.93) - BEC

 9x(0.15x0.93) - BEC

 3x(0.13x2.73) - BEC

 3x(0.13x2.73) - BEBC

Stress time t [s]

B
a

s
e

 c
u

rr
e

n
t 

d
e

g
ra

d
a

ti
o

n
 

I B
(t

) 
[A

] V
EB-stress

=3.5 V

2

3

4

E
x
c
e

s
s
 b

a
s
e

 c
u

rre
n

t id
e

a
lity

 fa
c
to

r n
R



Degradation results: nR vs. VBE 
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… tunneling at very low injection levels (TAT) 
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Model for base current degradation 
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nR=f(VEB-stress, VBE) mean value over various devices 
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Model for base current degradation 
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Model for base current degradation 
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Model provides a complete description for ΔIB and helps understand the physical 

background 
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 Results span over a longer duration for milder stress 

 Model is compared to experiments over aspect ratios, VEB-stress, and VBE 
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The unified model can be used to describe and predict base current 

degradation over stress time including all the involved variables (e.g., in 

compact models for circuit simulation and aging function extraction) 
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Natural recovery 

Forward bias recovery 

Thermal recovery 

Physical background provides insight into the stress 

mechanisms 
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Detrapping of oxide trapped carriers and not annihilation of interface states 

 

•Semi-logarithmic time dependence 

•Emitter layout does not affect the shape/slope 
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• Applied stress affects the slope 

• The density of hot holes is expected to exceed the density of 

hot electrons at low stress voltages 

• The decrease in positive (negative) oxide charge produces 

decrease (increase) of the positive surface potential ΔVS 
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 Standard procedure:  

Tannealing ≠ Tmeasurement → low accuracy 

Tannealing = Tmeasurement → strong restrictions 

 

 Proposed approach:  

 Self-heating as a means to accurately study 

the thermal recovery, its activation and rate 



Thermal recovery by self-heating 
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Controlled self-heating can be applied to reliably 

evaluate thermal and kinetics properties of recovery: 

 Annealing steps of given duration and temperature are 

obtained by setting PD 

 At preselected times, the annealing experiments are 

interrupted and the recovery rate is evaluated by switching 

the applied voltage bias 

 Controlled self-heating at higher dissipated power allows 

increasing recovery temperature of one’s choice 

 Recovery effects vs. PD, cumulated energy, cumulated 

heating time, junction-to-ambient temperature increase. 

TA=300 K, RTH known → TJ=TA+RTH·PD  
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Each bias point was applied for 10s and alternated to the 

measurement of the Gummel-plot at VCB=0 

PD=VCE·IC+VBE·IB 

TJ=TA+RTH·PD 
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 fI(t) increases with the heating time 

 Weaker recovery when the stress voltage was stronger 
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Low temperature → detrapping of carriers in the oxide 

High temperature → interface trap density passivation 

Annealing rate not proportional to the trap density. 

Modulation of the potential distribution due to trapped charges still occurs. 
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1. Higher rate for smallest device; reduction as the temperature 

increases 

2. The largest device is the fastest to recover; increase with 

temperature 
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Constant self-heating and thermal annealing  

1 h (ΔT=200 C) + 8 h (TA=125 C) → TJ≈300 C  

HBT #2 SH (180s) SH+T (1+8 h) 

4.00 37% 43% 

4.25 25% 34% 

4.50 21% 42% 

Recovery is faster for the strongly stressed devices 

Annihilation of interface traps finally prevails 

IB % recovery of HBT #2  @ VBE=0.5 V and VBC=0.0 V  



Outline 

 Reverse emitter-base stress  
Methods and techniques 

Evaluation and modeling of results 

Recovery experiments 

 Mixed mode stress 
Evaluation of results, modeling and TCAD  

Recovery experiments 

 Stress at the SOA edge 
Evaluation and modeling of results 

TCAD and SHE simulations 
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AE=WExLE 

[µm2] 

fMAX/fT 

[GHz] 

BVCEO 

[V] 

BVCBO 

[V] 

BVEBO 

[V] 

HS HBT 0.16x0.52 300/250 1.7 5 1.8 

HV HBT 0.22x1.04 120/45 3.7 15 1.9 
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Mixed-mode stress (high JE and high VCB) 
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MM stress 
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Mixed-mode stress results 
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Mixed-mode recovery results 
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Mixed-mode stress and TCAD 
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Outline 

 Reverse emitter-base stress  
Methods and techniques 

Evaluation and modeling of results 

Recovery experiments 

 Mixed mode stress 
Evaluation of results, modeling and TCAD  

Recovery experiments 

 Stress at the SOA edge 
Evaluation and modeling of results 

TCAD and SHE simulations 
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TCAD simulation of the aging at the SOA edge 
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Simulation of the aging dynamics adding trap density at the EB junction/EB spacer 

interface over stress time in the TCAD.  

,

,
.

,

( ) 1 1 expT initial

T final

final

T

T

N t
N t N

N 

    
            



TCAD simulation of the aging at the SOA edge 

68 

Calibration of the aging dynamics models available in TCAD.  
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Simulation of the aging dynamics using degradation models available in TCAD.  
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Simulation of the aging conditions  
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Tool based on the spherical harmonic expansion solution of the BTE. 

More reliable results: hot carrier holes included. 
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P3 has much more high energy holes than P2. 
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