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Boltzmann Transport Equation
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Spherical coordinates for k -space
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Spherical harmonics expansion of the distribution function
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11Semiclassical transport
Spherical harmonics expansion of the Boltzmann equation

1
(2π)3

∫
δ
(
ε− ε(~k)

)
Yl,m(ϑ, ϕ) {BE}d3k

yields balance equations over energy/real space

∂gl,m

∂t
− q~E ·

∂~jl,m
∂ε

+∇~r ·~jl,m − Γl,m = Wl,m{g}

with

~jl,m(~r , ε, t) = v(ε)
∑
l ′,m′

~al,m,l ′,m′gl ′.m′(~r , ε, t)

The balance equations are coupled



11Semiclassical transport
Spherical harmonics expansion of the Boltzmann equation

1
(2π)3

∫
δ
(
ε− ε(~k)

)
Yl,m(ϑ, ϕ) {BE}d3k

yields balance equations over energy/real space

∂gl,m

∂t
− q~E ·

∂~jl,m
∂ε

+∇~r ·~jl,m − Γl,m = Wl,m{g}

with

~jl,m(~r , ε, t) = v(ε)
∑
l ′,m′

~al,m,l ′,m′gl ′.m′(~r , ε, t)

The balance equations are coupled



11Semiclassical transport
Spherical harmonics expansion of the Boltzmann equation

1
(2π)3

∫
δ
(
ε− ε(~k)

)
Yl,m(ϑ, ϕ) {BE}d3k

yields balance equations over energy/real space

∂gl,m

∂t
− q~E ·

∂~jl,m
∂ε

+∇~r ·~jl,m − Γl,m = Wl,m{g}

with

~jl,m(~r , ε, t) = v(ε)
∑
l ′,m′

~al,m,l ′,m′gl ′.m′(~r , ε, t)

The balance equations are coupled



11Semiclassical transport
Spherical harmonics expansion of the Boltzmann equation

1
(2π)3

∫
δ
(
ε− ε(~k)

)
Yl,m(ϑ, ϕ) {BE}d3k

yields balance equations over energy/real space

∂gl,m

∂t
− q~E ·

∂~jl,m
∂ε

+∇~r ·~jl,m − Γl,m = Wl,m{g}

with

~jl,m(~r , ε, t) = v(ε)
∑
l ′,m′

~al,m,l ′,m′gl ′.m′(~r , ε, t)

The balance equations are coupled



12Semiclassical transport
H-transform

5eV

25eV

0eV x

H

H
(
~r , ~k

)
= ε

(
~k
)
− qΨ

(
~r
)
⇒ g′(~r ,H, t) = g(~r , ε, t)

Cancels the energy derivative for the stationary state

��
��
�
��H

HHH
HHH

−q~E ·
∂~j ′l,m
∂ε

+∇~r · ~j ′l,m − Γ′l,m = Wl,m{g′}

Captures ballistic transport



12Semiclassical transport
H-transform

5eV

25eV

0eV x

H

H
(
~r , ~k

)
= ε

(
~k
)
− qΨ

(
~r
)
⇒ g′(~r ,H, t) = g(~r , ε, t)

Cancels the energy derivative for the stationary state

��
��
�
��H

HHH
HHH

−q~E ·
∂~j ′l,m
∂ε

+∇~r · ~j ′l,m − Γ′l,m = Wl,m{g′}

Captures ballistic transport



12Semiclassical transport
H-transform

5eV

25eV

0eV x

H

H
(
~r , ~k

)
= ε

(
~k
)
− qΨ

(
~r
)
⇒ g′(~r ,H, t) = g(~r , ε, t)

Cancels the energy derivative for the stationary state

��
��
�
��H

HHH
HHH

−q~E ·
∂~j ′l,m
∂ε

+∇~r · ~j ′l,m − Γ′l,m = Wl,m{g′}

Captures ballistic transport



12Semiclassical transport
H-transform

5eV

25eV

0eV x

H

H
(
~r , ~k

)
= ε

(
~k
)
− qΨ

(
~r
)
⇒ g′(~r ,H, t) = g(~r , ε, t)

Cancels the energy derivative for the stationary state

��
��
�
��H

HHH
HHH

−q~E ·
∂~j ′l,m
∂ε

+∇~r · ~j ′l,m − Γ′l,m = Wl,m{g′}

Captures ballistic transport



13Semiclassical transport
Numerics

I H-transform
I Maximum Entropy Dissipation Scheme
I Dimensional splitting
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Complex band structure effects
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15Semiclassical transport
Electron-phonon scattering rate of silicon at 300K
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16Semiclassical transport
Electron mobility

0 100 200 300 400 500

103

104

105

106

Temperature [K]

Lo
w

-fi
el

d
m

ob
ili

ty
[c

m
2 /

V
s]

BE
Canali

Electron velocity at 300K
in < 111 > direction

10−1 100 101 102
105

106

107

Electric field [kV/cm]
D

rif
tv

el
oc

ity
[c

m
/

s]

BE
Canali

Good agreement between simulation and experiment for silicon



17Semiclassical transport

Impact ionization

Ionization coefficient
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Doping profile Collector current

SHE can handle high doping concentrations without problems

SHE can handle small currents without problems
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21Bipolar transistor

VBE = 0.55V , VCE = 0.5V
Energy distribution function

VCE = 0.5V
Electron density

SHE can handle huge variations in the density without problems



22Bipolar transistor

Dependence on the maximum order of SHE
VBE = 0.85V , VCE = 0.5V

Error in current Electron velocity

Transport in nanometric devices requires at least 5th order SHE
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N+NN+ structure
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Simulation of avalanche breakdown
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Transient DD simulation of switching a silicon pn-diode from 0 to -39V
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36pn Junction

Simulation for 37.172V and 10pA/µm2
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Increase of current by a factor of 1000 (dashed lines)
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Increase of current by a factor of 1000 (dashed lines)
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Vertical power transistor



40Power MOSFET
Avalanche breakdown of a power transistor

BE simulation for 35.83V and 10pA/µm2
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45 · 106 variables, 2 CPU hours
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BE simulation for 35.83V and 10pA/µm2
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Structure, DC and AC behavior
of the npn THz SiGe HBT



43Comparison with experiments

Comparison for an ST-Microelectronics SiGe HBT
at 10GHz and VCE = 1.2V
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45Doping and germanium profile
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High power densities lead to self-heating

Heating is non-local!
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Exact thermal simulation requires 3D simulation including metalization
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I Device degradation, self-heating, mechanical strain, ...
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57Conclusions
I Semiclassical simulations give detailed physics at the price of high

CPU times and a 2D real space
I Various effects can be included at a microscopic level
I DC, AC and noise analysis
I Device degradation, self-heating, mechanical strain, ...
I Transport at the nanoscale is very complex



57Conclusions
I Semiclassical simulations give detailed physics at the price of high

CPU times and a 2D real space
I Various effects can be included at a microscopic level
I DC, AC and noise analysis
I Device degradation, self-heating, mechanical strain, ...
I Transport at the nanoscale is very complex



57Conclusions
I Semiclassical simulations give detailed physics at the price of high

CPU times and a 2D real space
I Various effects can be included at a microscopic level
I DC, AC and noise analysis
I Device degradation, self-heating, mechanical strain, ...
I Transport at the nanoscale is very complex



57Conclusions
I Semiclassical simulations give detailed physics at the price of high

CPU times and a 2D real space
I Various effects can be included at a microscopic level
I DC, AC and noise analysis
I Device degradation, self-heating, mechanical strain, ...
I Transport at the nanoscale is very complex



57Conclusions
I Semiclassical simulations give detailed physics at the price of high

CPU times and a 2D real space
I Various effects can be included at a microscopic level
I DC, AC and noise analysis
I Device degradation, self-heating, mechanical strain, ...
I Transport at the nanoscale is very complex


